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Abstract

In the context of multi-agent systems, the rational veri�cation problem is concerned

with checking which temporal logic properties will hold in a system when its con-

stituent agents are assumed to behave rationally and strategically in pursuit of indi-

vidual objectives. Typically, those objectives are expressed as temporal logic formulae

which the relevant agent desires to see satis�ed. Unfortunately, rational veri�cation

is computationally complex, and requires specialised techniques in order to obtain

practically useable implementations. In this paper, we present such a technique. �is

technique relies on a reduction of the rational veri�cation problem to the solution of

a collection of parity games. Our approach has been implemented in the Equilibrium

Veri�cation Environment (EVE) system. �e EVE system takes as input a model of a

concurrent/multi-agent system represented using the Simple Reactive Modules Lan-

guage (SRML), where agent goals are represented as Linear Temporal Logic (LTL)

formulae, together with a claim about the equilibrium behaviour of the system, also

expressed as an LTL formula. EVE can then check whether the LTL claim holds on

some (or every) computation of the system that could arise through agents choosing

Nash equilibrium strategies; it can also check whether a system has a Nash equilib-

rium, and synthesise individual strategies for players in the multi-player game. A�er
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presenting our basic framework, we describe our new technique and prove its cor-

rectness. We then describe our implementation in the EVE system, and present ex-

perimental results which show that EVE performs favourably in comparison to other

existing tools that support rational veri�cation.

Keywords: Multi-agent systems, Temporal logic, Nash equilibrium, Bisimulation

invariance, Rational veri�cation, Model checking, Synthesis.

1. Introduction1

�e deployment of AI technologies in a wide range of application areas over the2

past decade has brought the problem of verifying such systems into sharp focus. Ver-3

i�cation is the problem of ensuring that a particular system is correct with respect to4

some speci�cation. �e most successful approach to automated formal veri�cation is5

that of model checking [1]. With this approach, we �rst derive a �nite state abstract6

model of the system S being studied; a common approach involves representing the7

system as a directed graph in which vertices correspond to states of the system, and8

edges correspond to the execution of program instructions, or the performance of ac-9

tions; branching in the graph represents either input from the environment, or choices10

available to components of the system. With this approach, the directed graph is typi-11

cally referred to as a labelled transition system, or Kripke structure: each path through12

the transition system represents a possible execution or computation of the system S .13

Correctness properties of interest are expressed as formulae ϕ of propositional tem-14

poral logic—the most popular such logics for this purpose are Linear Temporal Logic15

(LTL) and the Computation Tree Logic (CTL). In the case of properties ϕ expressed as16

LTL formulae, we typically want to check whether ϕ is satis�ed on some or all pos-17

sible computations of S , that is, on some or all possible paths through the transition18

system/Kripke structure representing S .19

Great advances have been made in model checking since the approach was �rst20

proposed in the early 1980s, and the technique is now widely used in industry. Never-21

theless, the veri�cation of practical so�ware systems is by no means a solved problem,22

and remains the subject of intense ongoing research. �e veri�cation of AI systems,23
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however, raises a distinctive new set of challenges. �e present paper is concerned24

with the problem of verifying multi-agent systems, which are AI systems consisting of25

multiple interacting semi-autonomous so�ware components known as agents [2, 3].26

So�ware agents were originally proposed in the late 1980s, but it is only over the past27

decade that the so�ware agent paradigm has been widely adopted. At the time of28

writing, so�ware agents are ubiquitous: we have so�ware agents in our phone (e.g.,29

Siri), processing requests online, automatically trading in global markets, controlling30

complex navigation systems (e.g., those in self-driving cars), and even carrying out31

tasks on our behalf in our homes (e.g., Alexa). Typically, these agents do not work in32

isolation: they may interact with humans or with other so�ware agents. �e �eld of33

multi-agent systems is concerned with understanding and engineering systems that34

have these characteristics.35

We typically assume that agents are acting in pursuit of goals or preferences that36

are delegated to them by their users. However, whether an agent is able to achieve37

its goal, or the extent to which it can bring about its preferences, will be directly38

in�uenced by the behaviour of other agents. �us, to act optimally, an agent must39

reason strategically, taking into account the goals/preferences of other agents, and the40

fact that they too will be acting strategically in the pursuit of these, taking into account41

the goals/preferences of other agents and their own strategic behaviour. Game theory42

is the mathematical theory of strategic interaction, and as such, it provides a natural43

set of tools for reasoning about multi-agent systems [4].44

With respect to the problem of verifying multi-agent systems, the relevance of45

game theory is as follows. Suppose we are interested in whether a multi-agent system46

S , populated by self-interested agents, might exhibit some property represented by an47

LTL formulaϕ. We can, of course, directly apply standard model checking techniques,48

to determine whether ϕ holds on some or all computations of S . However, given that49

our agents are assumed to act rationally, whetherϕ holds on some or all computations50

is not relevant if the computations in question involve irrational choices on behalf of51

some agents in the system. A much more relevant question, therefore, is whether ϕ52

holds on some or all computations that could result from agents in the system making53

rational choices. �is raises the question of what counts as a rational choice by the54
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agents in the system, and for this game theory provides a number of answers, in the55

form of solution concepts such as Nash equilibrium [4, 3]. �us, from the point of view56

of game theory, correct behaviour would correspond to rational behaviour according57

to some game theoretic solution concept, which is another way of saying that agents58

in the system will act optimally with respect to their preferences/goals, under the59

assumption that other agents do the same.60

�is approach to reasoning about the behaviour of multi-agent AI systems es-61

tablishes a natural connection between multi-agent systems and multi-player games:62

agents correspond to players, computations of the multi-agent system correspond to63

plays of the game, individual agent behaviours correspond to player strategies (which64

de�ne how players make choices in the system over time), and correct behaviour65

would correspond to rational behaviour—in our case, player behaviour that is con-66

sistent with the set of Nash equilibria of the multi-player game, whenever such a67

set is non-empty. Our main interest in this paper is the development of the theory,68

algorithms, and tools for the automated game theoretic analysis of concurrent and69

multi-agent systems, and in particular, the analysis of temporal logic properties that70

will hold in a multi-agent system under the assumption that players choose strategies71

which form a Nash equilibrium1.72

�e connection between AI systems (modelled as multi-agent systems) and multi-73

player games is well-established, but one may still wonder why correct behaviour for74

the AI system should correspond to rational behaviour in the multi-player game. �is75

is a legitimate question, especially, because game theory o�ers very many di�erent76

notions of rationality, and therefore of optimal behaviour in the system/game. For77

instance, solution concepts such as subgame-perfect Nash equilibrium (SPNE) and78

strong Nash equilibrium (SNE) are re�nements of Nash equilibrium where the notion79

of rationality needs to satisfy stronger requirements. Consequently, there may be80

executions of a multi-agent system that would correspond to a Nash equilibrium of81

the associated multi-player game (thus, regarded as correct behaviours of the multi-82

1Although in this work we focus on Nash equilibrium, a similar methodology may be applied using

re�nements of Nash equilibrium and other solution concepts.
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agent system), but which do not correspond to a subgame-perfect Nash equilibrium83

or to a strong Nash equilibrium of the associated multi-player game. We do not argue84

that Nash equilibrium is the only solution concept of relevance in the game theoretic85

analysis of multi-agent systems, but we believe (as do many others [3, 5, 6]) that Nash86

equilibrium is a natural and appropriate starting point for such an analysis. Taking87

Nash equilibrium as our baseline notion of rationality in multi-player games, and88

therefore of correctness in multi-agent systems, we focus our study on two problems89

related to the temporal equilibrium analysis of multi-agent systems [7, 8], as we now90

explain.91

Synthesis and Rational Veri�cation. �e two main problems of interest to us are the92

rational veri�cation and automated synthesis problems for concurrent and multi-agent93

systems modelled as multi-player games. In the rational veri�cation problem, we de-94

sire to check which temporal logic properties are satis�ed by the system/game in95

equilibrium, that is, temporal logic properties satis�ed by executions of the multi-96

agent system generated by strategies that form a Nash equilibrium. A li�le more for-97

mally, let P1, . . . , Pn be the agents in our concurrent and multi-agent system, and let98

NE(P1, . . . , Pn) denote the set of all executions, herea�er called runs, of the system99

that could be generated by agents selecting strategies that form a Nash equilibrium.100

Finally, let ϕ be an LTL formula. �en, in the rational veri�cation problem, we want101

to know whether for some/every run π ∈ NE(P1, . . . , Pn) we have π |= ϕ.102

In the automated synthesis problem, on the other hand, we additionally desire to103

construct a pro�le of strategies for players so that the resulting pro�le is an equilib-104

rium of the multi-player game, and induces a run that satis�es a given property of105

interest, again expressed as a temporal logic formula. �at is, we are given the system106

P1, . . . , Pn, and a temporal logic property ϕ, and we are asked to compute Nash equi-107

librium strategies ~σ = (σ1, . . . , σn), one for each player in the game, that would result108

in ϕ being satis�ed in the run π(~σ) that would be generated when these strategies are109

enacted.110
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Our Approach. In this paper, we present a new approach to the rational veri�ca-111

tion and automated synthesis problems for concurrent and multi-agent systems. In112

particular, we develop a novel technique that can be used for both rational veri�-113

cation and automated synthesis using a reduction to the solution of a collection of114

parity games. �e technique can be e�ciently implemented making use of power-115

ful techniques for parity games and temporal logic synthesis and veri�cation, and has116

been deployed in the Equilibrium Veri�cation Environment (EVE [9]), which supports117

high-level descriptions of systems/games using the Simple Reactive Modules Language118

(SRML [10, 7]) and temporal logic speci�cations given by Linear Temporal Logic for-119

mulae [11].120

�e central decision problem that we consider is that of Non-Emptiness, the prob-121

lem of checking if the set of Nash equilibria in a multi-player game is empty; as we will122

later show, rational veri�cation and synthesis can be reduced to this problem. If we123

consider concurrent and multi-player games in which players have goals expressed124

as temporal logic formulae, this problem is known to be 2EXPTIME-complete for a125

wide range of system representations and temporal logic languages. For instance, for126

games with perfect information played on labelled graphs, the problem is 2EXPTIME-127

complete when goals are given as LTL formulae [12], and 2EXPTIME-hard when goals128

are given in CTL [13]. �e problem is 2EXPTIME-complete even if succinct represen-129

tations [14, 15] or only two-player games [16] are considered, and becomes undecid-130

able if imperfect information and more than two players are allowed [17], showing131

the very high complexity of solving this problem, from both practical and theoretical132

viewpoints.133

A common feature of the results above mentioned is that—modulo minor variations—134

their solutions are, in the end, reduced to the construction of an alternating parity135

automaton over in�nite trees (APT [18]) which are then checked for non-emptiness.136

Here, we present a novel, simpler, and more direct technique for checking the ex-137

istence of Nash equilibria in games where players have goals expressed in LTL. In138

particular, our technique does not rely on the solution of an APT. Instead, we reduce139

the problem to the solution of (a collection of) parity games [19], which are widely140

used for synthesis and veri�cation problems.141
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Formally, a parity game is a two-player zero-sum turn-based game given by a142

labelled �nite graph H = (V0, V1, E, α) such that V = V0 ∪ V1 is a set of states143

partitioned into Player 0 (V0) and Player 1 (V1) states, respectively, E ⊆ V × V is144

a set of edges/transitions, and α : V → N is a labelling priority function. Player 0145

wins if the smallest priority that occurs in�nitely o�en in the in�nite play is even.146

Otherwise, player 1 wins. It is known that solving a parity game (checking which147

player has a winning strategy) is in NP ∩ coNP [20], and can be solved in quasi-148

polynomial time [21] 2.149

Our technique uses parity games in the following way. We take as input a gameG150

(representing a concurrent and multi-agent system) and build a parity gameH whose151

sets of states and transitions are doubly exponential in the size of the input but with152

priority function only exponential in the size of the input game. Using a determin-153

istic Stree� automaton on in�nite words (DSW [22]), we then solve the parity game,154

leading to a decision procedure that is, overall, in 2EXPTIME, and, therefore, given155

the hardness results we mentioned above, essentially optimal.156

Context. Games have several dimensions: for example, they may be cooperative or157

non-cooperative; have perfect or imperfect information; have perfect or imperfect158

recall; be stochastic or not; amongst many other features. Each of these aspects will159

have a modelling and computational impact on the work to be developed, and so it is160

important to be precise about the nature of the games we are studying, and therefore161

the assumptions underpinning our approach.162

Our framework considers non-cooperative multi-player general-sum games with163

perfect information, with Nash equilibrium as the main game-theoretic solution con-164

cept. �e games are played on �nite structures (state-transition structures induced165

by high-level SRML descriptions), with players having goals (preferences over plays)166

given by LTL formulae and deterministic strategies represented by �nite-state ma-167

chines with output (Moore machines, sometimes referred to as transducers). Because168

2Despite more than 30 years of research, and promising practical performance for algorithms to solve

them, it remains unknown whether parity games can be solved in polynomial time.
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of the features of our framework – chie�y, the fact that players have LTL goals and169

games are played on �nite structures – considering deterministic strategies modelled170

as �nite-state machines does not represent a restriction: in our framework, anything171

that a player can achieve with a perfect-recall strategy can also be achieved with a172

�nite-state machine strategy (see, e.g., [15] for the formal results).173

Finally, we note that our games have equilibria that are bisimulation invariant: that174

is, bisimilar structures have the same set of Nash equilibria. �is is a highly desirable175

property, and to the best of our knowledge, in this respect our work is unique in the176

computer science and multi-agent systems literatures.177

�e EVE System. �e technique outlined above and described in detail in this pa-178

per has been successfully implemented in the Equilibrium Veri�cation Environment179

(EVE) system [23]. EVE takes as input a model of a concurrent and multi-agent180

system, in which agents are speci�ed using the Simple Reactive Modules Language181

(SRML) [10, 7], and preferences for agents are de�ned by associating with each agent182

a goal, represented as a formula of LTL [11]. Note that we believe our choice of the183

Reactive Modules language is a very natural one [24]: �e language is both widely184

used in practical model checking systems, such as MOCHA [25] and PRISM [26], and185

close to real-world (declarative) programming models and speci�cation languages.186

Now, given a speci�cation of a multi-agent system and player preferences, the187

EVE system can: (i) check for the existence of a Nash equilibrium in a multi-player188

game; (ii) check whether a given LTL formula is satis�ed on some or every Nash189

equilibrium of the system; and (iii) synthesise individual player strategies in the game.190

As we will show in the paper, EVE performs favourably compared with other existing191

tools that support rational veri�cation. Moreover, EVE is the �rst and only tool for192

automated temporal equilibrium analysis for a model of multi-player games where193

Nash equilibria are preserved under bisimilarity3.194

Note that our approach may be used to model a wide range of multi-agent systems.195

3Other tools to compute Nash equilibria exist, but they do not use our model of strategies. A comparison

with those other techniques for equilibrium analysis are discussed later.
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For example, as shown in [7], it is easy to capture multi-agent STRIPS systems [27].196

Structure of the paper. �e remainder of this article is structured as follows.197

• Section 2 presents the relevant background on games, logic, and automata.198

• In Section 3, we formalise the main problem of interest and give a high-level199

description of the core decision procedure for temporal equilibrium analysis200

developed in this paper.201

• In Sections 4, 5, and 6, we describe in detail our main decision procedure for202

temporal equilibrium analysis, prove its correctness, and show that it is essen-203

tially optimal with respect to computational complexity.204

• In Section 7, we show how to use our main decision procedure to do rational205

veri�cation and automated synthesis of logic-based multi-player games.206

• In Section 8, we describe the EVE system, and give detailed experimental results207

which demonstrate that EVE performs favourably in comparison with other208

tools that support rational veri�cation.209

• In Section 9, we conclude, discuss relevant related work, and propose some210

avenues for future work.211

�e source code for EVE is available online4, and the system can also be accessed via212

the web5.213

2. Preliminaries214

Games. A concurrent (multi-player) game structure (CGS) is a tuple

M = (N, (Aci)i∈N,St, s0, tr)

where N = {1, . . . , n} is a set of players, each Aci is a set of actions, St is a set215

of states, with a designated initial state s0. With each player i ∈ N and each state216

4See https://github.com/eve-mas/eve-parity
5See http://eve.cs.ox.ac.uk/
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s ∈ St, we associate a non-empty set Aci(s) of available actions that, intuitively, i217

can perform when in state s. We refer to a pro�le of actions~a = (a1, . . . , an) ∈ ~Ac =218

Ac1 × · · · ×Acn as a direction. A direction ~a is available in state s if for all i we have219

ai ∈ Aci(s). Write ~Ac(s) for the set of available directions in state s. For a given set220

of players A ⊆ N and an action pro�le ~a, we let ~aA and ~a−A be two tuples of actions,221

respectively, one for each player in A and one for each player in N \A. We also write222

~ai for ~a{i} and ~a−i for ~aN\{i}. Furthermore, for two directions ~a and ~a′, we write223

(~aA,~a
′
−A) to denote the direction where the actions for players in A are taken from224

~a and the actions for players in N \ A are taken from ~a′. Finally, tr is a deterministic225

transition function, which associate each state s and every available direction ~a in s a226

state s′ ∈ St.227

Whenever there is ~a such that tr(s,~a) = s′, we say that s′ is accessible from s. A228

path π = s0, s1, . . . ∈ Stω is an in�nite sequence of states such that, for every k ∈ N,229

sk+1 is accessible from sk . By πk we refer to the (k + 1)-th state in π and by π≤k to230

the (�nite) pre�x of π up to the (k+ 1)-th element. An action pro�le run is an in�nite231

sequence η = ~a0,~a1, . . . of action pro�les. Note that, sinceM is deterministic (i.e.,232

the transition function tr is deterministic), for a given state s0, an action pro�le run233

uniquely determines the path π in which, for every k ∈ N, πk+1 = tr(πk,~ak).234

A CGS is a type of concurrent system. As such, behaviourally equivalent CGSs235

should give rise to strategically equivalent games. However, that is not always the236

case. A comprehensive study of this issue can be found in [28, 29] where the strate-237

gic power of games is compared using one of the most important behavioural (also238

called observational) equivalences in concurrency, namely bisimilarity, which is usu-239

ally de�ned over Kripke structures or labelled transition systems (see, e.g., [30, 31]).240

However, the equivalence can be uniformly de�ned for general CGSs, where direc-241

tions play the role of, for instance, actions in transition systems. Formally, let M =242

(N, (Aci)i∈N,St, s0, tr) and M ′ = (N, (Aci)i∈N,St′, s′0, tr
′) be two CGSs, and λ :243

St → AP and λ′ : St′ → AP be two labelling functions over a set of propositional244

variables AP. A bisimulation, denoted by ∼, between states s∗ ∈ St and t∗ ∈ St′ is245

a non-empty binary relation R ⊆ St × St′, such that s∗ R t∗ and for all s, s′ ∈ St,246

t, t′ ∈ St′, and ~a ∈ ~Ac:247
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• s R t implies λ(s) = λ′(t),248

• s R t and tr(s,~a) = s′ implies tr(t,~a) = t′′ for some t′′ ∈ St′ with s′ R t′′,249

• s R t and tr(t,~a) = t′ implies tr(s,~a) = s′′ for some s′′ ∈ St with s′′ R t′.250

�en, if there is a bisimulation between two states s∗ and t∗, we say that they are251

bisimilar and write s∗ ∼ t∗ in such a case. We also say that CGSs M and M ′ are252

bisimilar (in symbols M ∼ M ′) if s0 ∼ s′0. Bisimilar structures satisfy the same set253

of temporal logic properties, a desirable property that will be relevant later.254

A CGS de�nes the dynamic structure of a game, but lacks a central aspect of games255

in the sense of game theory: preferences, which give games their strategic structure.256

A multi-player game is obtained from a structureM by associating each player with a257

goal. In this paper, we consider multi-player games with parity and Linear Temporal258

Logic (LTL) goals.259

LTL [11] extends classical propositional logic with two operators, X (“next”) and

U (“until”), that can be used to express properties of paths. �e syntax of LTL is

de�ned with respect to a set AP of propositional variables as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ

where p ∈ AP. �e remaining classical logical connectives are de�ned in terms of260

¬ and ∨ in the usual way. Two key derived LTL operators are F (“eventually”) and261

G (“always”), which are de�ned in terms of U as follows: Fϕ = >Uϕ and Gϕ =262

¬F¬ϕ.263

We interpret formulae of LTL with respect to tuples (π, t, λ), where π is a path

over some multi-player game, t ∈ N is a temporal index into π, and λ : St → 2AP

is a labelling function, that indicates which propositional variables are true in every
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state. Formally, the semantics of LTL is given by the following rules:

(π, t, λ) |= >
(π, t, λ) |= p i� p ∈ λ(πt)

(π, t, λ) |= ¬ϕ i� it is not the case that (π, t, λ) |= ϕ

(π, t, λ) |= ϕ ∨ ψ i� (π, t, λ) |= ϕ or (π, t, λ) |= ψ

(π, t, λ) |= Xϕ i� (π, t+ 1, λ) |= ϕ

(π, t, λ) |= ϕUψ i� for some t′ ≥ t :
(
(π, t′, λ) |= ψ and

for all t ≤ t′′ < t′ : (π, t′′, λ) |= ϕ
)
.

If (π, 0, λ) |= ϕ, we write π |= ϕ and say that π satis�es ϕ.264

De�nition 1. A (concurrent multi-player) LTL game is a tuple

GLTL = (M, λ, (γi)i∈N)

where λ : St → 2AP is a labelling function on the set of states St ofM, and each γi265

is the goal of player i, given as an LTL formula over AP.266

To de�ne multi-player games with parity goals we consider priority functions.267

Let α : St → N be a priority function. A path π satis�es α : St → N, and write268

π |= α in that case, if the minimum number occurring in�nitely o�en in the in�nite269

sequence α(π0), α(π1), α(π2), . . . is even.270

Observe that parity conditions are pre�x-independent, that is, for every path π and271

a �nite sequence h ∈ St∗, it holds that h · π |= α if and only if π |= α.272

De�nition 2. A (concurrent multi-player) Parity game is a tuple

GPAR = (M, (αi)i∈N)

where αi : St→ N is the goal of player i, given as a priority function over St.273

Herea�er, for statements regarding either LTL or Parity games6, we will simply274

denote the underlying structure as G. Games are played by each player i selecting275

6To simplify notations, note that , herea�er, by “Parity game” we denote the concurrent and multi-player

extension de�ned here of the well-known two-player turn-based parity games in the literature.
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a strategy σi that will de�ne how to make choices over time. Formally, for a given276

game G, a strategy σi = (Si, s
0
i , δi, τi) for player i is a �nite state machine with277

output (a transducer), where Si is a �nite and non-empty set of internal states, s0i is278

the initial state, δi : Si × ~Ac → Si is a deterministic internal transition function,279

and τi : Si → Aci an action function. Note that strategies are required to output280

actions that are available to the agent in the current state. To enforce this, we assume281

that the current state s ∈ St in the arena is encoded in the internal state si in Si282

of agent i and that the action τi(si) taken by the action function belongs to Aci(s).283

Let Σi be the set of strategies for player i. A strategy is memoryless in G from s if284

Si = St, s0i = s, and δi = tr. Once every player i has selected a strategy σi, a strategy285

pro�le ~σ = (σ1, . . . , σn) results and the game has an outcome, a path inM, which286

we will denote by π(~σ). Because strategies are deterministic, π(~σ) is the unique path287

induced by ~σ, that is, the in�nite sequence s0, s1, s2, . . . such that288

• sk+1 = tr(sk, (τ1(sk1), · · · , τn(skn))), and289

• sk+1
i = δi(s

k
i , (τ1(sk1), · · · , τn(skn))), for all k ≥ 0.290

Note that the path induced by the strategy pro�le ~σ(σ1, . . . , σn) from state s0291

corresponds to the one generated by the �nite transducer T~σ obtained from the com-292

position of the strategies σi’s in ~σ, with input set St and output set ~Ac, where the293

initial input is s0. Since such transducer is �nite, the generated path π is ultimately294

periodic, that is, there exists p, r ∈ N such that πk = πk+r for every p ≤ k. �is means295

that, a�er the pre�x π≤p, the path loops inde�nitely over the sequence πp+1 . . . πp+r .296

Nash equilibrium. Since the outcome of a game determines if a player goal is sat-

is�ed, we can de�ne a preference relation �i over outcomes for each player i. Let wi
be γi if G is an LTL game, and be αi if G is a Parity game. �en, for two strategy

pro�les ~σ and ~σ′ in G, we have

π(~σ) �i π(~σ′) if and only if π(~σ′) |= wi implies π(~σ) |= wi.

On this basis, we can de�ne the concept of Nash equilibrium [4] for a multi-player

game with LTL or parity goals: given a game G, a strategy pro�le ~σ is a Nash equilib-
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rium of G if, for every player i and strategy σ′i ∈ Σi, we have

π(~σ) �i π((~σ−i, σ
′
i))

where (~σ−i, σ′i) denotes (σ1, . . . , σi−1, σ′i, σi+1, . . . , σn), the strategy pro�le where297

the strategy of player i in ~σ is replaced by σ′i. Let NE(G) denote the set of Nash298

equilibria of G. In [28, 29] we showed that, using the model of strategies de�ned299

above, the existence of Nash equilibria is preserved across bisimilar systems. �is is300

in contrast to other models of strategies considered in the concurrent games literature,301

which do not preserve Nash equilibria. Because of this, herea�er, we say that {Σi}i∈N302

is a set of bisimulation-invariant strategies and that NE(G) is the set of bisimulation-303

invariant Nash equilibrium pro�les of G.304

Automata. A deterministic automaton on in�nite words is a tuple

A = (AP, Q, q0, ρ,F)

where Q is a �nite set of states, ρ : Q × AP → Q is a transition function, q0 is

an initial state, and F is an acceptance condition. We mainly use parity and Stree�

acceptance conditions. A parity condition F is a partition {F1, . . . , Fn} of Q, where

n is the index of the parity condition and any [1, n] 3 k is a priority. We use a priority

function α : Q → N that maps states to priorities such that α(q) = k if and only

if q ∈ Fk . For a run π = q0, q1, q2 . . . , let inf (π) denote the set of states occurring

in�nitely o�en in the run:

inf (π) = {q ∈ Q | q = qi for in�nitely many i’s}

A run π is accepted by a deterministic parity word (DPW) automaton with condition

F if the minimum priority that occurs in�nitely o�en is even, i.e., if the following

condition is satis�ed:
(

min
k∈[1,n]

(inf (π) ∩ Fk 6= ∅)

)
mod 2 = 0.

A Stree� condition F is a set of pairs {(E1, C1), . . . , (En, Cn)} where Ek ⊆ Q and305

Ck ⊆ Q for all k ∈ [1, n]. A run π is accepted by a deterministic Stree� word (DSW)306

automaton S with condition F if π either visits Ek �nitely many times or visits Ck307

in�nitely o�en, i.e., if for every k either inf (π) ∩ Ek = ∅ or inf (π) ∩ Ck 6= ∅.308
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Figure 1: Example of a 4× 4 grid world.

Example. In order to illustrate the usage of our framework, consider the following309

example. Suppose we have two robots/agents inhabiting a grid world (an abstraction310

of some environment, e.g., a warehouse) with dimensions n× n. Initially, the agents311

are located at some corners of the grid; �e agents are each able to move around the312

grid in directions north, south, east, and west. �e goal of each agent is to reach the313

opposite corner. For instance, if agent i’s initial position is (0, 0), then the goal is to314

reach position (n−1, n−1). A number of obstacles may also appear on the grid. �e315

agents are not allowed to move into a coordinate occupied by an obstacle or outside316

the grid world. To make it clearer, consider the con�guration shown in Figure 1; a317

(grey) �lled square depicts an obstacle. Agent 1, depicted by �, can only move west318

to (2, 3), whereas agent 2, depicted by©, can only move east to (1, 0).319

In this example we make the following assumptions: (1) at each timestep, each320

agent has to make a move, that is, it cannot stay at the same position for two consec-321

utive timesteps, and it can only move at most one step; (2) the goal of each agent is, as322

stated previously, to eventually reach the opposite corner of her initial position. From323

system design point of view, the question that may be asked is: can we synthesise a324

strategy pro�le such that it induces a stable (Nash equilibrium) run and at the same325

time ensures that the agents never crash into each other?326

Checking the existence of such strategy pro�le is not trivial. For instance, the327

con�guration in Figure 1 does not admit any safe Nash equilibrium runs, that is, where328

all agents get their goals achieved without crashing into each other. Player © can329
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Figure 2: A 4× 4 grid world with safe Nash equilibrium.

reach (3, 3) without crashing into �, since � can safely “wait” by moving back and330

forth between (0, 3) and (1, 3) until © reaches (3, 3). However, there is no similar331

safe “waiting zone” for© to get out of �’s way. On the other hand, the con�guration332

in Figure 2, admits safe Nash equilibrium; © and � have safe waiting zones (0, 0)333

and (1, 0), and (0, 3) and (1, 3), respectively. Clearly, such a reasoning is not always334

straightforward, especially when the se�ing is more complex, and therefore, having335

a tool to verify and synthesise such scenario is desirable. Later in Section 8.5 we will336

discuss how to encode and check such systems using our tool.337

3. A Decision Procedure using Parity Games338

We are now in a position to formally state the Non-Emptiness problem:339

Given: An LTL Game GLTL.340

�estion: Is it the case that NE(GLTL) 6= ∅?341

As indicated before, we solve both veri�cation and synthesis through a reduction342

to the above problem. �e technique we develop consists of three steps. First, we343

build a Parity game GPAR from an input LTL game GLTL. �en—using a characteri-344

sation of Nash equilibrium (presented later) that separates players in the game into345

those that achieve their goals in a Nash equilibrium (the “winners”,W ) and those that346

do not achieve their goals (the “losers”, L)—for each set of players in the game, we347

eliminate nodes and paths in GPAR which cannot be a part of a Nash equilibrium, thus348
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producing a modi�ed Parity game, G−LPAR. Finally, in the third step, we use Stree� au-349

tomata on in�nite words to check if the obtained Parity game witnesses the existence350

of a Nash equilibrium. �e overall algorithm is presented in Algorithm 1 which also351

includes some comments pointing to the relevant Sections/�eorems. �e �rst step352

is contained in line 3, while the third step is in lines 12–14. �e rest of the algorithm353

is concerned with the second step. In the sections that follow, we will describe each354

step of the algorithm and, in particular, what are and how to compute Punj(GPAR)355

and G−LPAR, two key constructions used in our decision procedure.356

Algorithm 1: Nash equilibrium via Parity games

1 Input: An LTL game GLTL = (N, (Aci)i∈N,St, s0, tr, λ, (γi)i∈N).

2 Output: “Yes” if NE(GLTL) 6= ∅; “No” otherwise.

3 GPAR ⇐= GLTL ; /* from Section 4 (Theorem 1) */

4 foreachW ⊆ N do

5 foreach j ∈ L = N \W do

6 Compute Punj(GPAR) ; /* from Section 5 (Theorem 2) */

7 end

8 Compute G−LPAR

9 foreach i ∈W do

10 Compute Ai and Si from G−LPAR

11 end

12 if L(×i∈W (Si)) 6= ∅ ; /* from Section 5 (Theorem 3) */

13 then

14 return “Yes”

15 end

16 end

17 return “No”

Complexity. �e procedure presented above runs in doubly exponential time, match-357

ing the optimal upper bound of the problem. In the �rst step we obtain a doubly ex-358

ponential blowup. �e underlying structure M of the obtained Parity game GPAR359
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is doubly exponential in the size of the goals of the input LTL game GLTL, but the360

priority functions set (αi)i∈N is only (singly) exponential. �en, in the second step,361

reasoning takes only polynomial time in the size of the underlying concurrent game362

structure of GPAR, but exponential time in both the number of players and the size of363

the priority functions set. Finally, the third step takes only polynomial time, leading364

to an overall 2EXPTIME complexity.365

4. From LTL to Parity366

We now describe how to realise line 3 of Algorithm 1, and in doing so we prove a367

strong correspondence between the set of Nash equilibria of the input LTL game GLTL368

and the set of Nash equilibria of its associated Parity game GPAR. �is result al-369

lows us to shi� reasoning on the set of Nash equilibria of GLTL into reasoning on370

the set of Nash equilibria of GPAR. �e basic idea behind this step of the decision371

procedure is to transform all LTL goals (γi)i∈N in GLTL into a collection of DPWs,372

denoted by (Aγi)i∈N, that will be used to build the underlying CGS of GPAR. We373

construct GPAR as follows.374

In general, using the results in [32, 33], from any LTL formula ϕ over AP one can375

build a DPW Aϕ = 〈2AP, Q, q0, ρ, α〉 such that, L(Aϕ) = {π ∈ (2AP)ω : π |= ϕ},376

that is, the language accepted by Aϕ is exactly the set of words over 2AP that are377

models of ϕ. �e size of Q is doubly exponential in |ϕ| and the size of the range378

of α is singly exponential in |ϕ|. Using this construction we can de�ne, for each LTL379

goal γi, a DPW Aγi .380

De�nition 3. Let GLTL = (M, λ, (γi)i∈N) be an LTL game whose underlying CGS381

is M = (N, (Aci)i∈N,St, s0, tr), and let Aγi = 〈2AP, Qi, q
0
i , ρi, αi〉 be the DPW382

corresponding to player i’s goal γi in GLTL. �e Parity game GPAR associated to GLTL is383

GPAR = (M′, (α′i)i∈N), whereM′ = (N, (Aci)i∈N,St′, s′0, tr
′
) and (α′i)i∈N are as384

follows:385

• St′ = St××i∈NQi and s′0 = (s0, q
0
1 , . . . , q

0
n);386

• for each state (s, q1, . . . , qn) ∈ St′ and action pro�le ~a,387

tr′((s, q1, . . . , qn),~a) = (tr(s,~a), ρ1(q1, λ(s)), . . . , ρn(qn, λ(s));388
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• α′i(s, q1, . . . qn) = αi(qi).389

Intuitively, the game GPAR is the product of the LTL game GLTL and the collec-390

tion of parity (word) automata Aγi that recognise the models of each player’s goal.391

Informally, the game executes in parallel the original LTL game together with the au-392

tomata built on top of the LTL goals. At every step of the game, the �rst component393

of the product state follows the transition function of the original game GLTL, while394

the “automata” components are updated according to the labelling of the current state395

of GLTL. As a result, the execution in GPAR is made, component by component, by the396

original execution, say π, in the LTL game GLTL, paired with the unique runs of the397

DPWs Aγi generated when reading the word λ(π).398

Observe that in the translation from GLTL to its associated GPAR the set of actions399

for each player is unchanged. �is, in turn, means that the set of strategies in both400

GLTL and GPAR is the same, since for every state s ∈ St and action pro�le ~a, it follows401

that ~a is available in s if and only if it is available in (s, q1, . . . , qn) ∈ St′, for all402

(q1, . . . , qn) ∈×i∈NQi. Using this correspondence between strategies in GLTL and403

strategies in GPAR, we can prove the following Lemma, which states an invariance404

result between GLTL and GPAR with respect to the satisfaction of players’ goals.405

Lemma 1 (Goals satisfaction invariance). Let GLTL be an LTL game and GPAR its406

associated Parity game. �en, for every strategy pro�le ~σ and player i, it is the case that407

π(~σ) |= γi in GLTL if and only if π(~σ) |= αi in GPAR.408

Proof. We prove the statement by double implication. To show the le� to right im-409

plication, assume that π(~σ) |= γi in GLTL, for any player i ∈ N, and let π denote the410

in�nite path generated by ~σ in GLTL; thus, we have that λ(π) |= γi. On the other411

hand, let π′ denote the in�nite path generated in GPAR by the same strategy pro�le ~σ.412

Observe that the �rst component of π′ is exactly π. Moreover, consider the (i+ 1)-th413

component ρi of π′. By the de�nition of GPAR, it holds that ρi is the run executed414

by the automaton Aγi when the word λ(π) is read. By the de�nition of the labelling415

function of GPAR, it holds that the parity of π′ according to α′i corresponds to the one416

recognised by Aγi in ρi. �us, since we know that λ(π) |= γi, it follows that ρi is417

accepting in Aγi and therefore π′ |= αi, which implies that π(~σ) |= αi in GPAR. For418
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the other direction, observe that all implications used above are equivalences. Using419

those equivalences one can reason backwards to prove the statement.420

Using Lemma 1 we can then show that the set of Nash Equilibria for any LTL421

game exactly corresponds to the set of Nash equilibria of its associated Parity game.422

Formally, we have the following invariance result between games.423

�eorem 1 (Nash equilibrium invariance). Let GLTL be an LTL game and GPAR its424

associated Parity game. �en, NE(GLTL) = NE(GPAR).425

Proof. �e proof proceeds by double inclusion. First, assume that a strategy pro-426

�le ~σ ∈ NE(GLTL) is a Nash Equilibrium in GLTL and, by contradiction, it is not a Nash427

Equilibrium in GPAR. Observe that, due to Lemma 1, we known that the set of players428

that get their goals satis�ed by π(~σ) in GLTL (the “winners”,W ) is the same set of play-429

ers that get their goals satis�ed by π(~σ) in GPAR. �en, there is player j ∈ L = N\W430

and a strategy σ′j such that π((~σ−j , σ′j)) |= αj in GPAR. �en, due to Lemma 1, we431

have that π((~σ−j , σ′j)) |= γj in GLTL and so σ′j would be a bene�cial deviation for432

player j in GLTL too—a contradiction. On the other hand, for every ~σ ∈ NE(GPAR),433

we can reason in a symmetric way and conclude that ~σ ∈ NE(GLTL).434

5. Characterising Nash Equilibria435

�anks to �eorem 1, we can focus our a�ention on Parity games, since a tech-436

nique for solving such games will also provide a technique for solving their associated437

LTL games. To do this we characterise the set of Nash equilibria in the Parity game438

construction GPAR in our algorithm. �e existence of Nash Equilibria in LTL games439

can be characterised in terms of punishment strategies and memoryful reasoning [34].440

We will show that a similar characterisation holds here in a parity games framework,441

where only memoryless reasoning is required. To do this, we �rst introduce the notion442

of punishment strategies and regions formally, as well as some useful de�nitions and443

notations. In what follows, given a (memoryless) strategy pro�le ~σ = (σ1, . . . , σn)444

de�ned on a state s ∈ St of a Parity game GPAR, that is, such that s0i = s for every445
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i ∈ N, we write GPAR, ~σ, s |= αi if π(~σ) |= αi in GPAR. Moreover, if s = s0 is the446

initial state of the game, we omit it and simply write GPAR, ~σ |= αi in such a case.447

De�nition 4 (Punishment strategies and regions). For a Parity game GPAR and a448

player i ∈ N, we say that ~σ−i is a punishment (partial) strategy pro�le against i in a449

state s if, for all strategies σ′i ∈ Σi, it is the case that GPAR, (~σ−i, σ′i), s 6|= αi. A state450

s is punishing for i if there exists a punishment (partial) strategy pro�le against i in s.451

By Puni(GPAR) we denote the set of punishing states, the punishment region, for i in452

GPAR.453

To understand the meaning of a punishment (partial) strategy pro�le, it is useful454

to think of a modi�cation of the game GPAR, in which player i still has its goal αi,455

while the rest of the players are collectively playing in an adversarial mode, i.e., try-456

ing to make sure that i does not achieve αi. �is scenario is represented by a two-457

player zero-sum game in which the winning strategies of the (coalition) player, de-458

noted by −i, correspond (one-to-one) to the punishment strategies in the original459

game GPAR. As described in [34], knowing the set of punishment (partial) strategy460

pro�les in a given game is important to compute its set of Nash Equilibria. For this461

reason, it is useful to compute the set Puni(GPAR), that is, the set of states in the462

game from which a given player i can be punished. (e.g., to deter undesirable unilat-463

eral player deviations). To do this, we reduce the problem to computing a winning464

strategy in a turn-based two-player zero-sum parity game, whose de�nition is as fol-465

lows.466

De�nition 5. For a (concurrent multi-player) Parity game

GPAR = (N,St, (Aci)i∈N, s0, tr, (αi)i∈N)

and player j ∈ N, the sequentialisation of GPAR with respect to player j is the (turn-467

based two-player) parity game GjPAR =〈V0, V1,E , α〉 where468

• V0 = St and V1 = St× ~Ac−j ;469

• E = {(s, (s,~a−j)) ∈ St× (St× ~Ac−j)}∪{((s,~a−j), s′) ∈ (St× ~Ac−j)×St :470
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s1 s2(~a−j , aj) s1 (s1,~a−j) s2

Figure 3: Sequentialisation of a game. On the le�, a representation of a transition from s1 to s2 using

action pro�le (~a−j , aj). On the right, the two states s1 and s2 are assigned to Player 0 in the parity game,

which are interleaved with a state of Player 1 corresponding to the choice of ~a−j by coalition −j in the

original game.

∃a′j ∈ Acj . s
′ = tr(s, (~a−j), a′j)};471

• α : V0 ∪ V1 → N is such that472

α(s) = αj(s) + 1 and α(s,~a−j) = αj(s) + 1.473

�e formal connection between the notion of punishment in GPAR and the set474

of winning strategies in GjPAR is established in the following theorem, where by475

Win(GjPAR) we denote the winning region of Player 0 in GjPAR, that is, the states476

from which Player 0, representing the set of players −j = N \ {j} (the coalition of477

players not including j), has a memoryless winning strategy against player j in the478

two-player zero-sum parity game GjPAR.479

�eorem 2. For all states s ∈ St, it is the case that s ∈ Punj(GPAR) if and only if480

s ∈Win(GjPAR). In other words, it holds that Punj(GPAR) = Win(GjPAR) ∩ St.481

Proof. �e proof goes by double inclusion. From le� to right, assume s ∈ Punj(GPAR)

and let ~σ−j be a punishment strategy pro�le against player j in s, i.e., such that

GPAR, (~σ−j , σ′j), s 6|= αj , for every strategy σ′j ∈ Σj of player j. We now de�ne a

strategy σ0 for player 0 in GjPAR that is winning in s. In order to do this, �rst observe

that, for every �nite path π′≤k ∈ V ∗ · V0 in GjPAR starting from s, there is a unique

�nite sequence of action pro�les ~a0−j , . . . ,~ak−j and a sequence π≤k = s0, . . . , sk+1 of

states in St∗ such that

π′≤k = s0, (s0,~a0−j), . . . , s
k, (sk,~ak−j), . . . , s

k+1 .

Now, for every path π′≤k of this form that is consistent with ~σ−j , i.e., the sequence482

~a0−j , . . . ,~a
k−1
−j is generated by ~σ−j , de�ne σ0(π′≤k) = (sk+1,~ak+1

−j ), where ~ak+1
−j is483

the action pro�le selected by ~σ−j . To prove that σ0 is winning, consider a strategy484

σ1 for Player 1 and the in�nite path π′ = π((σ0, σ1)) generated by (σ0, σ1). It is485
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not hard to see that the sequence π′odd of odd positions in π′ belongs to a path π in486

GPAR and it is consistent with ~σ−j . �us, since ~σ−j is a punishment strategy, π′odd487

does not satisfy αj . Moreover, observe that the parity of the sequence π′even of even488

positions equals that of π′odd. �us, we have that Inf(λ′(π′)) + 1 = Inf(λ′(π′odd)) +489

1 ∪ Inf(λ′(π′even)) + 1 = Inf(λ(π)) and so π′ is winning for player 0 in GjPAR and σ0490

is a winning strategy.491

From right to le�, let s ∈ St ∩ Win(GjPAR) and let σ0 be a winning strat-492

egy for Player 0 in GjPAR, and assume σ0 is memoryless. Now, for every player i,493

with i 6= j, de�ne the memoryless strategy σi in GPAR such that, for every s′ ∈ St,494

if σ0(s′) = (s′,~a−j), then σi(s′) = (~a−j)i 7, i.e., the action that player i takes in495

σ0 at s′. Now, consider the (memoryless) strategy pro�le ~σ−j given by the com-496

position of all strategies σi, and consider a play π in GPAR, starting from s, that497

is consistent with ~σ−j . �us, there exists a play π′ in GiPAR, consistent with σ0,498

such that π = π′odd. Moreover, since π′odd = π′even, we have that Inf(λ′(π′)) =499

Inf(λ′(π′odd)) ∪ Inf(λ′(π′even)) = Inf(λ(π))− 1. Since π′ is winning for Player 0, we500

know that π 6|= αj and so ~σ−j is a punishment strategy against Player j in s.501

De�nition 5 and �eorem 2 not only make a bridge from the notion of punish-502

ment strategy to the notion of winning strategy for two-player zero-sum games, but503

also provide a way to understand how to compute punishment regions as well as504

how to synthesise an actual punishment strategy in Parity games. In this way, by505

computing winning regions and winning strategies in these games we can solve the506

synthesis problem for individual players in the original game with LTL goals, one of507

the problems we are interested in. �us, from De�nition 5 and �eorem 2, we have508

the following corollary.509

Corollary 1. Computing Puni(GPAR) can be done in polynomial time with respect510

to the size of the underlying graph of the game GPAR and exponential in the size of the511

priority functionαi, that is, to the size of the range ofαi. Moreover, there is a memoryless512

strategy ~σi that is a punishment against player i in every state s ∈ Puni(GPAR).513

7By an abuse of notation, we let σi(s′) be the value of τi(s′).
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Figure 4: Representation of the strategy σi. At the beginning, player i follows the transducer

Tη that generates the action pro�le run η. �e strategy adheres to it until a unilateral deviation

from player j occurs, here represented at the k-th step of the play. Once the deviation has

occurred, and the game entered a state s′, player i starts executing the strategy σpunj
i , to employ

the punishment strategy against player j.

As described in [34], in any (in�nite) run sustained by a Nash equilibrium ~σ in514

deterministic and pure strategies, that is, in π(~σ), it is the case that all players that515

do not get their goals achieved in π(~σ) can deviate from such a (Nash equilibrium)516

run only to states where they can be punished by the coalition consisting of all other517

players in the game. To formalise this idea in the present se�ing, we need one more518

concept about punishments, de�ned next.519

De�nition 6. An action pro�le run η = ~a0,~a1, . . . ∈ ~Ac
ω

is punishing-secure in s for520

player j if, for all k ∈ N and a′j , we have tr(πj , ((~ak)−j , a′j)) ∈ Punj(GPAR), where521

π is the only play in GPAR starting from s and generated by η.522

Using the above de�nition, we can characterise the set of Nash equilibria of a523

given game. Recall that strategies are formalised as transducers, i.e., as �nite state524

machines with output, so such Nash equilibria strategy pro�les produce runs which525

are ultimately periodic. Moreover, since in every run π there are players who get their526

goals achieved in π (and therefore do not have an incentive to deviate from π) and527

players who do not get their goals achieve in π (and therefore may have an incentive528

to deviate from π), we will also want to explicitly refer to such players. To do that, the529

following notation will be useful: LetW (GPAR, ~σ) = {i ∈ N : GPAR, ~σ |= αi} denote530

the set of player that get their goals achieved in π(~σ). We also write W (GPAR, π) =531

{i ∈ N : GPAR, π |= αi}.532

�eorem 3 (Nash equilibrium characterisation). For a Parity game GPAR, there is a533

Nash Equilibrium strategy pro�le ~σ ∈ NE(GPAR) if and only if there is an ultimately534
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periodic action pro�le run η such that, for every player j ∈ L = N \W (GPAR, π), the535

run η is punishing-secure for j in state s0, where π is the unique path generated by η536

from s0.537

Proof. �e proof is by double implication. From le� to right, for ~σ ∈ NE(GPAR), let538

η be the ultimately periodic sequence of action pro�les generated by ~σ. Moreover,539

assume for a contradiction that η is not punishing-secure for some j ∈ L. By the540

de�nition of punishment-secure, there is k ∈ N and action a′j ∈ Acj for player j541

such that s′ = tr(πk, ((~ak)−j , a′j) /∈ Punj(GPAR). Now, consider the strategy σ′j that542

follows η up to the (k−1)-th step, executes action a′j on step k to get into state s′, and543

applies a strategy that achieves αj from that point onwards. Note that such a strategy544

is guaranteed to exist since s′ /∈ Punj(GPAR). �erefore, GPAR, (~σ−j , σ′j) |= αj545

and so σ′j is a bene�cial deviation for player j, a contradiction to ~σ being a Nash546

equilibrium.547

From right to le�, we need to de�ne a Nash equilibrium ~σ assuming only the548

existence of η. First, recall that η can be generated by a �nite transducer Tη =549

(Qη, q
0
η, δη, τη) where δη : Qη → Qη and τη : Qη → ~Ac. Moreover, for every550

player i and deviating player j, with i 6= j, there is a (memoryless) strategy σpunji to551

punish player j in every state in Punj(GPAR). By suitably combining the transducer552

with the punishment strategies, we de�ne the following strategy σi = (Qi, q
0
i , δi, τi)553

for player i where554

• Qi = St×Qη × (L ∪ {>}) and q0i = (s0, q0η,>);555

• δi = Qi × ~Ac→ Qi is de�ned as556

δi((s, q,>),~a) =





(tr(s,~a), δη(q),>), if a = τη(q)

(tr(s,~a), δη(q), j), a−j = (τη(q))−j and ~aj 6= (τη(q))j

⊥, otherwise

8
557

• τi : Qi → Aci is such that558

8For completeness, the function δi is assumed to take an available action. However, this is not important,

as it is clear from the proof we never use this case.
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– τi(s, q,>) = (τη(q))i, and559

– τi(s, q, j) = σ
punj
i (s).560

To understand how strategy σi works, observe that its set of internal states is given561

by the following triple. �e �rst component is a state of the game, remembering562

the position of the execution. �e second component is a state of the transducer563

Tη , which is used to employ the execution of the action pro�le run η. �e third564

component is either the symbol >, used to �ag that no deviation has occurred, or the565

name of a losing player j, used to remember that such a player has deviated from η.566

At the beginning of the play, strategy σi starts executing the actions prescribed by567

the transducer Tη . It sticks to it until some losing player j performs a deviation. In568

such a case, the third component of the internal state of σi switches to remember the569

deviating player. Moreover, from that point on, it starts executing the punishment570

strategy σpunji . Recall that parity conditions are pre�x-independent. �erefore, no571

ma�er the result of the execution, if all the players start playing according to the572

punishment strategy σpunji , the resulting path will not satisfy the parity condition573

αj . Now, de�ne σ to be the collection of all σi. It remains to prove that ~σ is a Nash574

Equilibrium.575

First, observe that since~σ produces exactly η, we haveW (GPAR, ~σ) = W (GPAR, η),576

that is, the players that get their goals achieved in π(~σ) and η are the same. �us,577

only players in L could have a bene�cial deviation. Now, consider a player j ∈ L578

and a strategy σ′j and let k ∈ N be the minimum (�rst) step where σ′j produces579

an outcome that di�ers from σj when executed along with ~σ−j . We write π′ for580

π((~σ−j , σ′j)). �us, we have πh = π′h for all h ≤ k and πk+1 6= π′k+1. Hence π′k+1 =581

tr(π′k, (ηk)−j , a′j) = tr(πk, (ηk)−j , a′j) ∈ Punj(GPAR) and GPAR, (~σ−j , σ′j) 6|= αj ,582

since σ−j is a punishment strategy from π′k+1. �us, there is no bene�cial deviation583

for j and ~σ is a Nash equilibrium.584

6. Computing Nash Equilibria585

�eorem 3 allows us to reduce the problem of �nding a Nash equilibrium to �nding586

a path in the game satisfying certain properties, which we will show how to check587
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using DPW and DSW automata. To do this, let us �x a given set W ⊆ N of players588

in a given game GPAR, which are assumed to get their goals achieved. Now, due to589

�eorem 3, we have that an action pro�le run η corresponds to a Nash equilibrium590

with W being the set of “winners” in the game if, and only if, the following two591

properties are satis�ed:592

• η is punishment-secure for j in s0, for all j ∈ L = N \W ;593

• GPAR, π |= αi, for every i ∈W ;594

where π is, as usual, the path generated by η from s0.595

To check the existence of such η, we have to check these two properties. First,596

note that, for η to be punishment-secure for every losing player j ∈ L, the game597

has to remain in the punishment region of each j. �is means that an acceptable598

action pro�le run needs to generate a path that is, at every step, contained in the599

intersection
⋂
j∈L Punj(GPAR). �us, to �nd a Nash equilibrium, we can remove all600

states not in such an intersection. We also need to remove some edges from the game.601

Indeed, consider a state s and a partial action pro�le ~a−j . It might be the case that602

tr(s, (~a−j , a′j)) /∈ Punj(GPAR), for some a′j ∈ Acj . �erefore, an action pro�le run603

that executes the partial pro�le ~a−j over s cannot be punishment-secure, and so all604

outgoing edges from (s,~a−j), can also be removed. A�er doing this for every j ∈ L,605

we obtain G−LPAR, the game resulting from GPAR a�er the removal of the states and606

edges just described. As a consequence, G−LPAR has all and only the paths that can be607

generated by an action pro�le run that is punishment-secure for every j ∈ L.608

�e only thing that remains to be done is to check whether there exists a path in609

G−LPAR that satis�es all players in W . To do this, we use DPW and DSW automata.610

Since players goals are parity conditions, a path satisfying player i is an accepting611

run of the DPW Ai where the set of states and transitions are exactly those of G−LPAR612

and the acceptance condition is given by αi. �en, in order to �nd a path satisfying613

the goals of all players in W , we can solve the emptiness problem of the automaton614

intersection×i∈W Ai. However, observe that eachAi di�ers from each other only in615

its acceptance condition αi. Moreover, each parity conditionα = (F1, . . . , Fn) can be616

regarded as a Street condition of the form ((E1, C1), . . . , (Em, Cm)) with m = dn2 e617
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and (Ei, Ci) = (F2i+1,
⋃
j≤i F2j), for every 0 ≤ i < m. �erefore, the intersection618

language of×i∈W Ai can be recognized by a Street automaton over the same set of619

states and transitions and the concatenation of all the Stree� conditions determined620

by the parity conditions of the players in W . �e overall translation is a DSW au-621

tomaton with a number of Stree� pairs being logarithmic in the number of its states,622

whose emptiness can be solved in polynomial time [35]. Finally, as we �xed W at the623

beginning, all we need to do is to use the procedure just described for each W ⊆ N, if624

needed (see Algorithm 1). 9
625

Concerning the complexity analysis, consider again Algorithm 1 and denote by626

n the number of agents and |StLTL| the number of states. Observe that Line 3 of the627

algorithm builds a Parity game GPAR by making the product construction between628

GLTL and all the DPW automata Aγi , whose state space is 22
|γi| , and the number of629

priorities is 2|γi|. �us, the number of states of GPAR is |StPAR| = |StLTL| ·22
|γ1| · . . . ·630

22
|γn| . Now, on the one hand, Line 6 requires to solve a parity game on the state-graph631

of GPAR with 2γi priorities. �is is solved by applying Zielonka’s algorithm [37], that632

works in time (|StPAR|)2 · (|StPAR|)2
γi , thus polynomial in the state space of GPAR633

and doubly exponential in the size of objectives γi’s. On the other hand, Line 12634

calls for the Non-Emptiness procedure of a DSW whose number of Street pairs is635

linear in the sum of priorities of the automataAγ , . . . ,Aγn and so logarithmic in its636

state-space (that is doubly exponential in the size of the objectives). Such procedure637

is polynomial in the state space of the automaton [35, Corollary 10.8] and therefore638

polynomial in |StPAR|. Finally, consider the consider the loops of Line 4 and Line 5,639

respectively. �e �rst is on all the possible subsets of agents, and thus of length 2n.640

�e second is on all the possible agents, and thus of length n. �is sums up to an641

overall complexity for Algorithm 1 of:642

2n · n · ((|StPAR|)2 · (|StPAR|)
∑
i∈N 2γi + |StPAR|).

Recall that |StPAR| is linear in the set of states of the GLTL and doubly exponential643

9Some previous techniques, e.g. [36], to the computation of pure Nash equilibria are not optimal as they

have exponential space complexity in the number of players |N|.
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in every objective γi’s of the agents. �us, the procedure is polynomial in |StLTL|,644

exponential in N , and doubly exponential in the size of the formulas |γ1|, . . . , |γN |.645

7. Synthesis and Veri�cation646

We now show how to solve the synthesis and veri�cation problems using Non-647

Emptiness. For synthesis, the solution is already contained in the proof of �eorem 3,648

so we only need to sketch out the approach here. Note that, in the computation of649

punishing regions, the algorithm builds, for every player i and potential deviator j,650

a (memoryless) strategy that player i can play in the collective strategy pro�le ~σ−j651

in order to punish player j, should player j wishes to deviate. If a Nash equilibrium652

exists, the algorithm also computes a (ultimately periodic) witness of it, that is, a653

computation π in G, that, in particular, satis�es the goals of players in W . At this654

point, using this information, we are able to de�ne a strategy σi for each player i ∈ N655

in the game (i.e., including those not inW ), as follows: while no deviation occurs, play656

the action that contributes to generate π, and if a deviation of player j occurs, then657

play the (memoryless) strategy σpunji that is de�ned in the game to punish player j in658

case j were to deviate. Notice, in addition, that because of Lemma 1 and �eorem 1,659

every strategy for player i in the game with parity goals is also a valid strategy for660

player i in the game with LTL goals, and that such a strategy, being bisimulation-661

invariant, is also a strategy for every possible bisimilar representation of player i. In662

this way, our technique can also solve the synthesis problem for every player, that663

is, can compute individual bisimulation-invariant strategies for every player (system664

component) in the original multi-player game (concurrent system).665

For veri�cation, one can use a reduction of the following two problems, called666

E-Nash and A-Nash in [15, 8, 7], to Non-Emptiness.667

Given: Game GLTL, LTL formula ϕ.668

E-Nash: Is it the case that π(~σ) |= ϕ, for some ~σ ∈ NE(GLTL) ?669

A-Nash: Is it the case that π(~σ) |= ϕ, for all ~σ ∈ NE(GLTL) ?670

We write (GLTL, ϕ) ∈ E-Nash to denote that (GLTL, ϕ) is an instance of E-Nash, i.e.,671
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given a game GLTL and a LTL formula ϕ, the answer to E-Nash problem is a “yes”;672

and, similarly for A-Nash.673

Because we are working on a bisimulation-invariant se�ing, we can ensure some-674

thing even stronger: that for any two games GLTL and G′LTL, whose underlying CGSs675

areM andM′, respectively, we know that ifM is bisimilar toM′, then (GLTL, ϕ) ∈676

E-Nash if and only if (G′LTL, ϕ) ∈ E-Nash, for all LTL formulae ϕ; and, similarly for677

A-Nash, as desired.678

In order to solve E-Nash and A-Nash via Non-Emptiness, one could use the679

following result, whose proof is a simple adaptation of the same result for iterated680

Boolean games [15] and for multi-player games with LTL goals modelled using SRML [7],681

which was �rst presented in [38].682

Lemma 2. LetG be a game and ϕ be an LTL formula. �ere is a gameH of linear size683

in G, such that NE(H) 6= ∅ if and only if ∃~σ ∈ NE(G). π(~σ) |= ϕ .684

However, since we have Algorithm 1 at our disposal, an easier – and more direct685

– solution can be obtained. To solve E-Nash we can modify line 12 of Algorithm 1686

to include the restriction that such an algorithm, which now receives ϕ as a param-687

eter, returns “Yes” in line 13 if and only if ϕ is satis�ed in some run in the set of688

Nash equilibrium witnesses. �e new line 12 is “if L(×i∈W (Si) × Sϕ) 6= ∅”, where689

Sϕ is the DSW automaton representing ϕ. All complexities remain the same; the690

modi�ed algorithm for E-Nash is denoted as Algorithm 1’. We can then use Algo-691

rithm 1’ to solve A-Nash, also as described in [38]: essentially, we can check whether692

Algorithm 1’(GLTL,¬ϕ) returns “No” in line 16. If it does, then no Nash equilibrium693

of GLTL satis�es ¬ϕ, either because no Nash equilibrium exists at all (thus, A-Nash694

is vacuously true) or because all Nash equilibria of GLTL satisfy ϕ, then solving A-695

Nash positively. Note that in this case, since A-Nash is solved positively when the696

algorithm returns “No” in line 16, then no speci�c Nash equilibrium strategy pro�le697

is synthesised, as expected. However, if the algorithm returns “Yes”, that is, the case698

when the answer to A-Nash problem with (GLTL, ϕ) instance is negative, then a strat-699

egy pro�le is synthesised from Algorithm 1’ which corresponds to a counter-example700

for (GLTL, ϕ) ∈ A-Nash. It should be easy to see that implementing E-Nash and A-701
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Nash is straightforward from Algorithm 1. Also, as already known, it is also easy to702

see that Algorithm 1’ solves Non-Emptiness if and only if (GLTL,>) ∈ E-Nash.703

8. Implementation704

We have implemented the decision procedures presented in this paper. Our im-705

plementation uses SRML [10] as a modelling language. SRML is based on the Reac-706

tive Modules language [24] which is used in a number of veri�cation tools, including707

PRISM [26] and MOCHA [25]. �e tool that implements our algorithms is called EVE708

(for Equilibrium Veri�cation Environment) [23]. EVE is the �rst and only tool able709

to analyse the linear temporal logic properties that hold in equilibrium in a concur-710

rent, reactive, and multi-agent system within a bisimulation-invariant framework. It711

is also the only tool that supports all of the following combined features: a high-level712

description language using SRML, general-sum multi-player games with LTL goals,713

bisimulation-invariant strategies, and perfect recall. It is also the only tool for Nash714

equilibrium analysis that relies on a procedure based on the solution of parity games,715

which has allowed us to solve the (rational) synthesis problem for individual play-716

ers in the system using very powerful techniques originally developed to solve the717

synthesis problem from (linear-time) temporal logic speci�cations.718

To the best of our knowledge, there are only two other tools that can be used719

to reason about temporal logic equilibrium properties of concurrent/multi-agent sys-720

tems: PRALINE [39] and MCMAS [40, 41].721

PRALINE allows one to compute a Nash equilibrium in a game played in a con-722

current game structure [39]. �e underlying technique uses alternating Büchi au-723

tomata and relies on the solution of a two-player zero-sum game called the ‘suspect724

game’ [36]. PRALINE can be used to analyse games with di�erent kinds of players725

goals (e.g., reachability, safety, and others), but does not permit LTL goals, and does726

not compute bisimulation-invariant strategies.727

MCMAS is a model checking tool for multi-agent systems [42]. Since it can be728

used to model check Strategy Logic (SL [12]) formulae [41], and SL can express the729

existence of a Nash equilibrium, one can model a multi-agent system in MCMAS and730
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check for the existence of a Nash equilibrium in such a system using SL. However,MC-731

MAS only supports SL with memoryless strategies (while our implementation does732

not have this restriction) and, as PRALINE, does not compute bisimulation-invariant733

strategies either.734

From the many di�erences between PRALINE, MCMAS, and EVE (and their asso-735

ciated underlying reasoning and veri�cation techniques), one of the most important736

ones is bisimulation-invariance, a feature needed to be able to do veri�cation and syn-737

thesis, e.g., when using symbolic methods with OBDDs or some model-minimisation738

techniques. Not being bisimulation-invariant also means that in some cases PRALINE,739

MCMAS, and EVE would deliver completely di�erent answers. For instance, unlike740

EVE, with PRALINE and MCMAS it may be the case that for two bisimilar systems741

PRALINE and MCMAS would compute a Nash equilibrium in one of them and none742

in the other. A particular instance is the “motivating example” in [28]. Since the two743

systems there are bisimilar, EVE is able to compute a bisimulation-invariant Nash744

equilibrium in both systems, while PRALINE and MCMAS, both of which are not us-745

ing bisimulation-invariant model of strategies, cannot. �e experiment supporting746

this claim is reported in Section 8.4 along with the performance results. Indeed, even747

in cases where all tools are able to compute a Nash equilibrium, EVE outperforms the748

other two tools as the size of the input system grows, despite the fact that the model749

of strategies we use in our procedure is richer in the sense that it takes into account750

more information of the underlying game.10
751

8.1. Tool Description752

Modelling Language. Systems in EVE are speci�ed with the Simple Reactive Modules753

Language (SRML [10]), that can be used to model non-deterministic systems. Each754

system component (agent/player) in SRML is represented as a module, which con-755

sists of an interface that de�nes the name of the module and lists a non-empty set of756

Boolean variables controlled by the module, and a set of guarded commands, which de-757

10As mentioned before, not all games can be tested in all tools since, for instance, PRALINE does not

support LTL objectives, but only goals expressed directly as Büchi conditions.
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�ne the choices available to the module at each state. �ere are two kinds of guarded758

commands: init, used for initialising the variables, and update, used for updating759

variables subsequently.760

A guarded command has two parts: a “condition” part (the “guard”) and an “ac-761

tion” part. �e “guard” determines whether a guarded command can be executed or762

not given the current state, while the “action” part de�nes how to update the value763

of (some of) the variables controlled by a corresponding module. Intuitively, ϕ ; α764

can be read as “if the condition ϕ is satis�ed, then one of the choices available to the765

module is to execute α”. Note that the value of ϕ being true does not guarantee the766

execution of α, but only that it is enabled for execution, and thus may be chosen. If767

no guarded command of a module is enabled in some state, then that module has no768

choice and the values of the variables controlled by it remain unchanged in the next769

state.770

Formally, an SRML module mi is de�ned as a triple mi = (Φi, Ii, Ui), where

Φi ⊆ Φ is the �nite set of Boolean variables controlled by mi, Ii a �nite set of init

guarded commands, such that for all g ∈ Ii, we have ctr(g) ⊆ Φi, and Ui a �nite

set of update guarded commands, such that for all g ∈ Ui, we have ctr(g) ⊆ Φi. A

guarded command g over a set of variables Φ is an expression

g : ϕ; x′1 := ψ1; . . . ;x′k := ψk

where the guard ϕ is a propositional logic formula over Φ, each xi is a member of

Φ and ψi is a propositional logic formula over Φ. Let guard(g) denote the guard of

g, thus, in the above rule, we have guard(g) = ϕ. It is required that no variable xi
appears on the le� hand side of more than one assignment statements in the same

guarded command, hence no issue on the (potentially) con�icting updates arises. �e

variables x1, . . . , xk are controlled variables in g ∈ Ui and we denote this set by

ctr(g). If no guarded command of a module is enabled, then the values of all variables

in ctr(g) are unchanged. A set of guarded commands is said to be disjoint if their

controlled variables are mutually disjoint. To make it clearer, here is an example of a
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module toggle controls x

init

:: >; x′ := >;

:: >; x′ := ⊥;

update

:: ¬x; x′ := >;

:: x; x′ := ⊥;

Figure 5: Example of module toggle in SRML.

guarded command:

(p ∧ q)︸ ︷︷ ︸
guard

; p′ := >; q′ := ⊥︸ ︷︷ ︸
action

�e guard is the propositional logic formula (p∧ q), so this guarded command will be771

enabled if both p and q are true. If the guarded command is chosen (to be executed),772

then in the next time-step, variable p will be assigned true and variable q will be773

assigned false.774

Figure 5 shows a module named toggle that controls a Boolean variable named775

x. �ere are two init guarded commands and two update guarded commands. �e776

init guarded commands de�ne two choices for the initialisation of variable x: true or777

false. �e �rst update guarded command says that if x has the value of true, then778

the corresponding choice is to assign it to false, while the second command says that779

if x has the value of false, then it can be assigned to true. Intuitively, the module780

would choose (in a non-deterministic manner) an initial value for x, and then on781

subsequent rounds toggles this value. In this particular example, the init commands782

are non-deterministic, while the update commands are deterministic. We refer to [7]783

for further details on the semantics of SRML. In particular, in Figure 12 of [7], we detail784

how to build a Kripke structure that models the behaviour of an SRML system. In785

addition, we associate each module with a goal, which is speci�ed as an LTL formula.786

At this point, readers might notice that the way SRML modules are de�ned leads787

to the possibility of having multiple initial states – which appears to contradict the788
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⊗ G−LPAR
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GPAR
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Figure 6: High-level work�ow of EVE.

de�nition of CMGS. However, this is not a problem, since we can always add an extra789

“pre”-initial state whose outgoing edges are labelled according to init guarded com-790

mands, and use it as the “real” initial state.791

Automated Temporal Equilibrium Analysis. Once a multi-agent system is mod-792

elled in SRML, it can be seen as a multi-player game in which players (the modules)793

use strategies to resolve the non-deterministic choices in the system. EVE uses Algo-794

rithm 1 to solve Non-Emptiness. �e main idea behind this algorithm is illustrated795

in Figure 6. �e general �ow of the implementation is as follows. Let GLTL be a game,796

modelled using SRML, with a set of players/modules N = {1, . . . , n} and LTL goals797

Γ = {γ1, . . . , γn}, one for each player. Using GLTL we construct an associated con-798

current game with parity goals GPAR in order to shi� reasoning on the set of Nash799

equilibria of GLTL into the set of Nash equilibria of GPAR. �e basic idea of this con-800

struction is, �rstly, to transform all LTL goals in GLTL into deterministic parity word801

(DPW) automata. To do this, we use LTL2BA tool [43, 44] to transform the formulae802

into nondeterministic Büchi word (NBW) automata. From NBWs, we construct the803

associated deterministic parity word (DPW) automata via construction described in804

[33]. Secondly, to perform a product construction of the Kripke structure that repre-805

sents GLTL with the collection of DPWs in which the set of Nash equilibria of the input806

game is preserved. With GPAR in our hands, we can then reason about Nash equilibria807

by solving a collection of parity games. To solve these parity games, we use PGSolver808
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tool [45, 46]. EVE then iterates through all possible set of “winners” W ⊆ N (Algo-809

rithm 1 line 4) and computes a punishment region Punj(GPAR) for each j ∈ L = N\W ,810

with which a reduced parity game G−LPAR =
⋂
j∈L Punj(GPAR) is built. Notice that for811

each player j, Punj(GPAR) need only computed once and can be stored, thus result-812

ing in a more e�cient running time. Lastly, EVE checks whether there exists a path813

ρ in G−LPAR that satis�es the goals of each i ∈ W . To do this, we translate G−LPAR into a814

deterministic Stree� automata, whose language is empty if and only if so is the set815

of Nash equilibria of GPAR. For E-Nash problem, we simply need to �nd a run in the816

witness returned when we check for Non-Emptiness; this can be done via automata817

intersection11.818

EVE was developed in Python and available online from [9]. EVE takes as input819

a concurrent and multi-agent system described in SRML code, with player goals and820

a property ϕ to be checked speci�ed in LTL. For Non-Emptiness, EVE returns “YES”821

(along with a set of winning players W ) if the set of Nash equilibria in the system is822

not empty, and returns “NO” otherwise. For E-Nash (A-Nash), EVE returns “YES” if823

ϕ holds on some (every) Nash equilibrium of the system, and “NO” otherwise.824

In the next subsection, we present some case studies to evaluate the performance825

of EVE. �e case studies are based on distributed and concurrent systems that can nat-826

urally be modelled as multi-agent systems. We note, however, that such case studies827

bear no special relevance to multi-agent systems research. Instead, our only purpose828

is to use such case studies and multi-agent systems to evaluate EVE’s performance,829

rather than to solve problems of particular relevance in the AI or multi-agent sys-830

tems literatures. Nevertheless, one could easily see that the case studies are based on831

systems that one can imagine to be found in many AI systems nowadays.832

8.2. Case Studies833

In this section, we present two examples from the literature of concurrent and834

distributed systems to illustrate the practical usage of EVE. Among other things, these835

two examples di�er in the way they are modelled as a concurrent game. While the836

11For A-Nash is straightforward, since it is the dual of E-Nash.
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Figure 7: Gossip framework structure.

module RM1 controls s1

init

:: true ∼> s1’:=true;

update

:: s1 ∼> s1’:=false;

:: s1 ∼> s1’:=true;

:: !s1 and (!s2 or ... or !sn)

∼> s1’:=true;

goal

:: G F (!s1);

Figure 8: SRML machine readable code for mod-

ule RM1 as wri�en in EVE’s input code.

�rst one is played in an arena implicitly given by the speci�cation of the players in the837

game (as done in [7]), the second one is played on a graph, e.g., as done in [47] with838

the use of concurrent game structures. Both of these models of games (modelling839

approaches) can be used within our tool. We will also use these two examples to840

evaluate EVE’s practical performance and compare it against MCMAS and PRALINE841

in Section 8.3. Furthermore, since PRALINE and MCMAS use di�erent modelling842

languages – ISPL in the case of MCMAS – we need to translate the examples modelled843

in SRML into PRALINE’s input language and ISPL. Given the high-level nature of844

SRML, the translation might introduce exponential blowup. However, we argue that845

this is not a problem from the comparison point of view, since the exponential blowup846

is also unavoidable when building Kripke structures from SRML games.847

Gossip protocols. �ese are a class of networking and communication protocols that848

mimic the way social networks disseminate information. �ey have been used to849

solve problems in many large-scale distributed systems, such as peer-to-peer and cloud850

computing systems. Ladin et al. [48] developed a framework to provide high avail-851

ability services via replication which is based on the gossip approach �rst introduced852

in [49, 50]. �e main feature of this framework is the use of replica managers (RMs)853

which exchange “gossip” messages periodically in order to keep the data updated. �e854

architecture of such an approach is shown in Figure 7.855

We can model each RM as a module in SRML as follows: (1) When in servicing856

mode, an RM can choose either to keep in servicing mode or to switch to gossiping857

mode; (2) If it is in gossiping mode and there is at least another RM also in gossiping858
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mode12, since the information during gossip exchange is of (small) bounded size, it859

goes back to servicing mode in the subsequent step. We then set the goal of each RM860

to be able to gossip in�nitely o�en. As shown in Figure 8, the module RM1 controls861

a variable: s1. Its value being true signi�es that RM1 is in servicing mode; other-862

wise, it is in gossiping mode. Behaviour (1) is re�ected in the �rst and second update863

commands, while behaviour (2) is re�ected in the third update command. �e goal of864

RM1 is speci�ed with the LTL formula GF ¬ s1, which expresses that RM1’s goal is865

to gossip in�nitely o�en: “always” (G) “eventually” (F) gossip (¬s1).866

Observe that with all RMs rationally pursuing their goals, they will adopt any867

strategy which induces a run where each RM can gossip (with at least one other RM)868

in�nitely o�en. In fact, this kind of game-like modelling gives rise to a powerful869

characteristic: on all runs that are sustained by a Nash equilibrium, the distributed870

system is guaranteed to have two crucial non-starvation/liveness properties: RMs can871

gossip in�nitely o�en and clients can be served in�nitely o�en. Indeed, these prop-872

erties are veri�ed in the experiments; with E-Nash: no Nash equilibrium sustains “all873

RMs forever gossiping”; and with A-Nash: in all Nash equilibria at least one of the874

RM is in servicing mode in�nitely o�en. We also notice that each RM is modelled as875

a non-deterministic open system: non-determinism is used in the �rst two updated876

commands, as they have the same guard s1 and therefore will be both enabled at the877

same time; and the system is open since each module’s state space and choices depend878

on the states of other modules, as re�ected by the third updated command.879

Replica Control Protocol. Consensus is a key issue in distributed computing and multi-880

agent systems. An important application domain is in maintaining data consistency.881

Gi�ord [51] proposed a quorum-based voting protocol to ensure data consistency by882

not allowing more than one processes to read/write a data item concurrently. To do883

this, each copy of a replicated item is assigned a vote.884

We can model a (modi�ed version of) Gi�ord’s protocol as a game as follows. �e885

set of players N = {1, . . . , n} in the game is arranged in a request queue represented886

12�e core of the protocol involves (at least) pairwise interactions periodically.
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Figure 9: Gi�ord’s protocol modelled as a game.

by the sequence of states q1, . . . , qn, where qi means that player i is requesting to887

read/write the data item. At state qi, other players in N\{i} then can vote whether888

to allow player i to read/write. If the majority of players in N vote “yes”, then the889

transition goes to q0, i.e., player i is allowed to read/write, and otherwise it goes to890

qi+1
13. �e voting process then restarts from q1. �e protocol’s structure is shown in891

Figure 9. Notice that at the last state, qn, there is only one outgoing arrow to q0. As892

in the previous example, the goal of each player i is to visit q0 right a�er qi in�nitely893

o�en, so that the desired behaviour of the system is sustained on all Nash equilibria of894

the system: a data item is not concurrently accessed by two di�erent processes and the895

data is updated in every round. �e associated temporal properties are automatically896

veri�ed in the experiments in Section 8.3. Speci�cally, the temporal properties we897

check are as follows. With E-Nash: there is no Nash equlibrium in which the data is898

never updated; and, with A-Nash: on all Nash equilibria, for each player, its request899

will be granted in�nitely o�en. Also, in this example, we de�ne a module, called900

“Environment”, which is used to represent the underlying concurrent game structure,901

shown in Figure 9, where the game is played.902

8.3. Experiment I903

In order to evaluate the practical performance of our tool and approach (against904

MCMAS and PRALINE), we present results on the temporal equilibrium analysis for905

the examples in Section 8.2. We ran the tools on the two examples with di�erent906

13We assume arithmetic modulo (|N|+ 1) in this example.
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Table 1: Gossip Protocol experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 4 9 0.02 0.24 0.08 0.02 1.71 1.73 0.01 0.01 0.01

3 8 27 0.09 0.43 0.26 0.33 26.74 27.85 0.02 0.06 0.06

4 16 81 0.42 3.51 1.41 0.76 547.97 548.82 760.65 3257.56 3272.57

5 32 243 2.30 35.80 25.77 10.06 TO TO TO TO TO

6 64 729 16.63 633.68 336.42 255.02 TO TO TO TO TO

7 128 2187 203.05 TO TO 5156.48 TO TO TO TO TO

8 256 6561 4697.49 TO TO TO TO TO TO TO TO

Table 2: Replica control experiment results.

P S E
EVE PRALINE MCMAS

ν (s) ε (s) α (s) ν (s) ε (s) α (s) ν (s) ε (s) α (s)

2 3 8 0.04 0.11 0.10 0.05 0.64 0.74 0.01 0.01 0.02

3 4 20 0.11 1.53 0.22 0.12 4.96 5.46 0.02 0.06 0.11

4 5 48 0.34 1.73 0.68 0.56 65.50 67.45 1.99 4.15 11.28

5 6 112 1.43 2.66 2.91 6.86 1546.90 1554.80 1728.73 6590.53 TO

6 7 256 5.87 13.69 16.03 94.39 TO TO TO TO TO

7 8 576 32.84 76.50 102.12 2159.88 TO TO TO TO TO

8 9 1280 166.60 485.99 746.55 TO TO TO TO TO TO

numbers of players (“P”), states (“S”), and edges (“E”). �e experiments were obtained907

on a PC with Intel i5-4690S CPU 3.20 GHz machine with 8 GB of RAM running Linux908

kernel version 4.12.14-300.fc26.x86 64. We report the running time14 for solving Non-909

14To carry out a fairer comparison (since PRALINE does not accept LTL goals), we added to PRALINE’s

running time the time needed to convert LTL games into its input.
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Emptiness (“ν”), E-Nash (“ε”), and A-Nash (“α”). For the last two problems, since910

there is no direct support in PRALINE and MCMAS, we used the reduction of E/A-911

Nash to Non-Emptiness presented in [38]. Intuitively, the reduction is as follows:912

given a gameG and formulaϕ, we construct a new gameH with two additional agents,913

say n + 1 and n + 2, with goals γn+1 = ϕ ∨ (p ↔ q) and γn+2 = ϕ ∨ ¬(p ↔ q),914

where Φn+1 = {p} and Φn+2 = {q}, p and q are fresh Boolean variables. �is means915

that it is the case NE(H) 6= ∅ if and only if there exists a Nash equilibrium run in G916

satisfying ϕ.917

From the experiment results shown in Table 1 and 2, we observe that, in general,918

EVE has the best performance, followed by PRALINE and MCMAS. Although PRA-919

LINE performed be�er than MCMAS, both struggled (timed-out15) with inputs with920

more than 100 edges, while EVE could handle up to 6000 edges (for Non-Emptiness).921

8.4. Experiment II922

�is experiment is taken from the motivating examples in [28]. Suppose the sys-923

tems shown in Figure 10 and 11 represents a 3-player game, where each transition924

is labelled by the actions x, y, z of player 1, 2, and 3, respectively, an asterisk ∗ be-925

ing a wildcard. �e goals of the players can be represented by the LTL formulae926

γ1 = Fp, γ2 = Fq, and γ3 = G¬(p ∨ q). �e system in Figure 10 has a Nash equi-927

librium, whereas no (non-bisimulation-invariant strategies) Nash equilibria exists in928

the (bisimilar) system in Figure 11.929

In this experiment, we extended the number of states by adding more layers to930

the game structures used there in order to test the practical performance of EVE,931

MCMAS, and PRALINE. �e experiments were performed on a PC with Intel i7-932

4702MQ CPU 2.20GHz machine with 12GB of RAM running Linux kernel version933

4.14.16-300.fc26.x86 64. We divided the test cases based on the number of Kripke934

states and edges; then, for each case, we report (i) the total running time16 (“time”)935

and (ii) whether the tools �nd any Nash equilibria (“NE”).936

15Time-out was �xed to be 7200 seconds.
16Similarly to Experiment I (Section 8.3), we added to PRALINE’s running time the time needed to convert

LTL games into its input to carry out a fairer comparison.
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Figure 10: A 3-player game with Nash equilibrium.

Table 3 shows the results of the experiments on the example in which the model937

of strategies that depends only on the run (sequence of states) of the game (run-based938

strategies [28]) cannot sustain any Nash equilibria, a model of strategies that is not939

invariant under bisimilarity. Indeed, since MCMAS and PRALINE use this model of940

strategies, both did not �nd any Nash equilibria in the game, as shown in Table 3.941

EVE, which uses a model of strategies that not only depends on the run of the game942

but also on the actions of players (computation-based [28]), found a Nash equilibrium943

in the game. We can also see that EVE outperformed MCMAS on games with 14 or944

more states. In fact, MCMAS timed-out17 on games with 17 states or more, while EVE945

kept working e�ciently for games of bigger size. We can also observe that PRALINE946

performed almost as e�ciently as EVE in this experiment, although EVE performed947

be�er in both small and large instances of these games.948

17We �xed the time-out value to be 3600 seconds (1 hour).
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Figure 11: A 3-player game without (non-bisimulation-invariant strategies) Nash equilibria.

In Table 4, we used the example in which Nash equilibria is sustained in run-949

based strategies. As shown in the table, MCMAS found Nash equilibria in games with950

6 and 9 states. However, since MCMAS uses imperfect recall, when the third layer951

was added (case with 12 states in Table 4) to the game, it could not �nd any Nash952

equilibria. Regarding running times, EVE outperformed MCMAS from the game with953

12 states and beyond, where MCMAS timed-out on games with 15 or more states.954

As for PRALINE, it performed comparably to EVE in this experiment, but again, EVE955

performed be�er in all instances.956

8.5. Experiment III957

�is experiment is based on the example previously presented in Section 2. For

this particular experiment, we assume that initially the agents are located at opposing

corners of the grid; speci�cally, agent 1 is located at the top-le� corner (coordinate

(0, 0)) and agent 2 at the bo�om-right corner (n−1, n−1). A number of obstacles are

also placed (uniformly) randomly on the grid. We use a binary encoding to represent
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Table 3: Example with no Nash equilibrium.

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

5 80 0.04 No 0.75 Yes 0.77 No

8 128 0.24 No 2.99 Yes 2.06 No

11 176 6.28 No 3.86 Yes 4.42 No

14 224 273.14 No 7.46 Yes 8.53 No

17 272 TO – 13.31 Yes 15.33 No
...

...
...

...
...

...
...

...

50 800 TO – 655.80 Yes 789.77 No

Table 4: Example with Nash equilibria

states edges
MCMAS EVE PRALINE

time (s) NE time (s) NE time (s) NE

6 96 0.02 Yes 1.09 Yes 1.19 Yes

9 144 0.77 Yes 3.36 Yes 3.76 Yes

12 192 65.31 No 7.45 Yes 8.89 Yes

15 240 TO – 15.52 Yes 17.72 Yes

18 288 TO – 30.06 Yes 30.53 Yes
...

...
...

...
...

...
...

...

51 816 TO – 1314.47 Yes 1563.79 Yes

the spatial information of the grid world which includes the grid coordinates, as well

as the obstacles and the agents locations. For instance, to encode a position of an agent

1 in 4×4 grid, we need 4 Boolean variables arranged as a tuple pos1 =〈x10, x11, y10 , y11〉.
An instance of such a tuple pos1 = 〈0, 1, 1, 0〉 means that agent 1 is at (2, 1). For

each time step and i ∈ {1, 2}, the update guarded command set Ui is such a way

that agent i can only move horizontally and vertically, 1 step at a time. Furthermore,
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Figure 12: Plots from Table 5. Y-axis is in logarithmic scale.

the commands in Ui respect the legality of movement, i.e., agent i cannot move out

of bound or into an obstacle. �e goal of each agent can be expressed by the LTL

formulae

γ1 = F(
∧

i∈{0,...,n−1}
x1i ∧

∧

i∈{0,...,n−1}
y1i )

and

γ2 = F(
∧

i∈{0,...,n−1}
¬x2i ∧

∧

i∈{0,...,n−1}
¬y2i ).

A safety speci�cation (no more than one agent occupying the same position at the

same time) can be expressed by the following LTL formula:

ϕ = G¬(
∧

i∈{0,...,n−1}
(x1i ↔ x2i ) ∧

∧

i∈{0,...,n−1}
(y1i ↔ y2i )).

�e experiment was obtained on a PC with Intel i5-4690S CPU 3.20 GHz machine958

with 8 GB of RAM running Linux kernel version 4.12.14-300.fc26.x86 64. We varied959

the size of the grid world (“size”) from 3 × 3 to 10 × 10, each with a �xed number960

of obstacles (“# Obs”), randomly distributed on the grid. We report the number of961

Kripke states (“KS”), Kripke edges (“KE”), GPAR states (“GS”), GPAR edges (“GE”),962

Non-Emptiness execution time (“ν”), and E-Nash execution time (“ε”). We ran the963

experiment for �ve replications, and report the average (ave), minimum (min), and964
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Table 5: Grid world experiment results.

Size # Obs KS KE GS

3 3 15(13, 18) 44(32, 72) 60(53, 73)

4 6 40(32, 52) 150(98, 200) 156(121, 209)

5 10 94(61, 125) 398(242, 512) 376(453, 741)

6 15 155(113, 185) 655(450, 800) 619(453, 741)

7 21 228(181, 290) 994(800, 1250) 909(725, 1161)

8 28 491(394, 666) 2297(1922, 2888) 1963(1577, 2665)

9 36 564(269, 765) 2687(1352, 3698) 2256(1077, 3061)

10 45 916(730, 1258) 4780(3528, 6498) 3657(2921, 5033)

Size GE ν (s) ε (s)

3 173(129, 289) 0.44(0.19, 1.14) 1.21(0.5, 2.63)

4 595(379, 801) 0.98(0.63, 1.16) 1.57(1.01, 2.24)

5 1591(969, 2049) 4.73(2.62, 6.22) 22.51(18.22, 26.25)

6 2622(1801, 3201) 9.53(7.13, 11.49) 32.32(26.05, 37.35)

7 3969(3161, 5001) 17.69(13.81, 21.58) 48.90(39.70, 59.50)

8 9190(7689, 11553) 50.91(38.38, 72.49) 121.33(95.03, 167.25)

9 10748(5409, 14793) 100.94(45.81, 137.91) 6002.80(5477.63, 6374.26)

10 19102(14113, 25993) 211.30(152.74, 311.43) 6871.16(6340.64, 7650.87)

maximum (max) times from the replications. �e results are reported in Table 5, with965

the following format: ave(min,max).966

From the experiment results, we see that EVE works well for Non-Emptiness up967

until size 10. From the plots in Figure 12, we can clearly see that the values of each968

variable, except for ε, grow exponentially. For ε (E-Nash), however, it seems to grow969

faster than the rest. Speci�cally, it is clearly visible in transitions between numbers970
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that have di�erent size of bit representation, i.e., 4 to 5 and 8 to 918. �ese jumps971

correspond to the time used to build deterministic parity automata on words from972

LTL properties to be checked in E-Nash, which is essentially, bit-for-bit comparisons973

between the position of agent 1 and 2.974

From the experiments shown in this section it is also clear that the bo�leneck in975

the performance is the translation of LTL goals and the high-level description of the976

game into the underlying parity game. Once an explicit parity game is constructed,977

then the performance improves radically. �is result is perfectly consistent with what978

the theoretical complexity of the decision procedure predicts: our algorithm works979

in doubly-exponential time in the size of the goals of the players, while it is only980

singly-exponential in the size of the SRML speci�cation. �ese two exponential-time981

reductions are in fact optimal, so there is no hope that they can be improved, at least982

in theory. On the other hand, the actual subroutine that �nds a Nash equilibrium and983

computes players’ strategies from the parity games representation of the problem is984

rather e�cient in theory – but still not known to be in polynomial time using the best985

algorithms to solve parity games. �en, it is clear that a natural way to make rational986

veri�cation a feasible problem, in theory, is to look at cases where goals and/or game987

representations are simpler. Such study is conducted in [52], where several positive988

results on the complexity of solving the rational veri�cation problem are obtained.989

9. Concluding Remarks and Related Work990

�is paper contains a complete study, from theory to implementation, of the tem-991

poral equilibrium analysis of multi-agent AI systems formally modelled as multi-992

player games. �e two main contributions of the paper are: (1) a novel and optimal993

decision procedure, based on the solution of parity games, that can be used to solve994

both the rational veri�cation and the automated synthesis problems for multi-player995

games; and (2) a complete implementation of the general game-theoretic modelling996

and reasoning framework – with full support of goals expressed as LTL formulae and997

18Since the grid coordinate index starts at 0, the “actual” transitions are 3 to 4 and 7 to 8.
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high-level game descriptions in SRML – which is available online. Our work builds998

on several previous results in the computer science (synthesis and veri�cation) and AI999

literatures (multi-agent systems). Relevant related literature will be discussed next.1000

Equilibrium Analysis in Multi-Agent Systems. Rational veri�cation was pro-1001

posed as an complementary veri�cation methodology to conventional methods, such1002

as model checking. A legitimate question is, then, when is rational veri�cation an ap-1003

propriate veri�cation approach? A possible answer is given next. �e veri�cation1004

problem [1], as conventionally formulated, is concerned with checking that some1005

property, usually de�ned using a modal or a temporal logic [53], holds on some or1006

on every computation run of a system. In a game-theoretic se�ing, this can be a1007

very strong requirement – and in some cases even inappropriate – since only some1008

computations of the system will arise (be sustained) as the result of agents in the sys-1009

tem choosing strategies in equilibrium, that is, due to strategic and rational play. It1010

was precisely this concern that motivated the rational veri�cation approach [7, 8].1011

In rational veri�cation, we ask if a given temporal property holds on some or every1012

computation run that can be sustained by agents choosing Nash equilibrium strate-1013

gies. Rational veri�cation can be reduced to the Non-Emptiness problem, as stated1014

in this paper; cf., [38]. As a consequence, along with the polynomial transformations1015

in [38], our results provide a complete framework (theory, algorithms, and imple-1016

mentation) for automated temporal equilibrium analysis, speci�cally, to do rational1017

synthesis and formal veri�cation of logic-based multi-agent systems. �e framework,1018

in particular, provides a concrete and algorithmic solution to the rational synthesis1019

problem as studied in [14], where the Boolean case (iterated games where players1020

control Boolean variables, whose valuations de�ne sequences of states in the game,1021

i.e., the plays in the game) was given an interesting automata-theoretic solution via1022

(an extension of) Strategy Logic [16].1023

Automata and logic. In computer science, a common technique to reason about1024

Nash equilibria in multi-player games is using alternating parity automata on in�nite1025

trees (APTs [18]). �is approach is used to do rational synthesis [14, 54]; equilibrium1026

checking and rational veri�cation [8, 15, 7]; and model checking of logics for strategic1027
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reasoning capable to specify the existence of a Nash equilibrium in concurrent game1028

structures [47], both in two-player games [16, 55] and in multi-player games [56, 12].1029

In cases where players’ goals are simpler than general LTL formulae, e.g., for reacha-1030

bility or safety goals, alternating Büchi automata can be used instead [36]. Our tech-1031

nique is di�erent from all these automata-based approaches, and in some cases more1032

general, as it can be used to handle either a more complex model of strategies or a1033

more complex type of goals, and delivers an immediate procedure to synthesise indi-1034

vidual strategies for players in the game, while being amenable to implementation.1035

Tools and algorithms. In theory, the kind of equilibrium analysis that can be done1036

usingMCMAS [40, 57, 58] and PRALINE [39, 36] rely on the automata-based approach.1037

However, the algorithms that are actually implemented have a di�erent �avour. MC-1038

MAS uses a procedure for SL which works as a labelling algorithm since it only consid-1039

ers memoryless strategies [58]. On the other hand, PRALINE, which works for Büchi1040

de�nable objectives, uses a procedure based on the “suspect game” [36]. Despite some1041

similarities between our construction and the suspect game, introduced in [36], the1042

two procedures are substantially di�erent. Unlike our procedure, the suspect game is1043

a standard two-player zero-sum turn-based game H(G, π), constructed from a game1044

G and a possible path π, in which one of the players (“Eve”) has a winning strategy1045

if, and only if, π can be sustained by a Nash equilibrium in G. �e overall procedure1046

in [36] relies on the construction of such a game, whose size (space complexity) is1047

exponential in the number of agents [36, Section 4.3]. Instead, our procedure solves,1048

independently, a collection of parity games that avoids an exponential use of space but1049

may require to be executed exponentially many times. Key to the correctness of our1050

approach is that we deal with parity conditions, which are pre�x-independent, ensur-1051

ing that punishment strategies do not depend on the history of the game. Regarding1052

similarities, our procedure also checks for the existence of a path sustained by a Nash1053

Equilibrium, but our algorithm does this for every subsetW ⊆ N of agents, if needed.1054

Doing this (i.e., trading exponential space for exponential time), at every call of this1055

subroutine, our algorithm avoids building an exponentially sized game, likeH. On the1056

other hand, from a practical point of view, avoiding the construction of such an expo-1057
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nential sized game leads to be�er performance (running times), even in cases where1058

no Nash equilibrium exists, when our subroutine is necessarily called exponentially1059

many times. In addition to all of the above, neither the algorithm used forMCMAS nor1060

the one used for PRALINE computes pure Nash equilibria in a bisimulation-invariant1061

framework, as our procedure does. While MCMAS and PRALINE are the two closest1062

tools to EVE, they are not the only available options to reason about games. For in-1063

stance, PRISM-games [59], EAGLE [60], and UPPAAL [61] are other interesting tools1064

to reason about games. PRISM-games allows one to do strategy synthesis for turn-1065

based stochastic games as well as model checking for long-run, average, and ratio1066

rewards properties. Only until very recently, PRISM-games had no support of equi-1067

librium reasoning, but see [62]. EAGLE is a tool speci�cally designed to reason about1068

pure Nash equilibria in multi-player games. EAGLE considers games where goals1069

are given as CTL formulae and allows one to check if a given strategy pro�le is a1070

Nash equilibrium of a given multi-agent system. �is decision problem, called Mem-1071

bership within the rational veri�cation framework [8], is, theoretically, simpler than1072

Non-Emptiness: while the former can be solved in EXPTIME (for branching-time1073

goals expressed using CTL formulae [13]), the la�er is 2EXPTIME-complete for LTL1074

goals, and even 2EXPTIME-hard for CTL goals and nondeterministic strategies [13].1075

UPPAAL is another tool that can be used to analyse equilibrium behaviour in a sys-1076

tem [63, 64]. However, UPPAAL di�ers from EVE in various critical ways: e.g., it works1077

in a quantitative se�ing, uses statistical model checking, and most importantly, com-1078

putes approximate Nash equilibria of a game.1079

�eRole of Bisimilarity. One crucial aspect of our approach to rational veri�cation1080

and synthesis is the role of bisimilarity [65, 31, 66, 67]. Bisimulation is the most impor-1081

tant type of behavioural equivalence relation considered in computer science, and in1082

particular two bisimilar systems will satisfy the same temporal logic properties. In our1083

se�ing, it is highly desirable that properties which hold in equilibrium are sustained1084

across all bisimilar systems to P1, . . . , Pn. �at is, that for every (temporal logic)1085

property ϕ and every system component P ′i modelled as an agent in a multi-player1086

game, if P ′i is bisimilar to Pi ∈ {P1, . . . , Pn}, then ϕ is satis�ed in equilibrium – that1087
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is, on a run induced by some Nash equilibrium of the game – by P1, . . . , Pi, . . . Pn if1088

and only if is also satis�ed in equilibrium by P1, . . . , P
′
i , . . . , Pn, the system in which1089

Pi is replaced by P ′i , that is, across all bisimilar systems to P1, . . . , Pn. �is property1090

is called invariance under bisimilarity. Unfortunately, as shown in [34, 28], the satis-1091

faction of temporal logic properties in equilibrium is not invariant under bisimilarity,1092

thus posing a challenge for the modular and compositional reasoning of concurrent1093

systems, since individual system components in a concurrent system cannot be re-1094

placed by (behaviourally equivalent) bisimilar ones, while preserving the temporal1095

logic properties that the overall multi-agent system satis�es in equilibrium. �is is1096

also a problem from a synthesis point of view. Indeed, a strategy for a system com-1097

ponent Pi may not be a valid strategy for a bisimilar system component P ′i . As a1098

consequence, the problem of building strategies for individual processes in the con-1099

current system P1, . . . , Pi, . . . Pn may not, in general, be the same as building strate-1100

gies for a bisimilar system P1, . . . , P
′
i , . . . Pn, again, deterring any hope of being able1101

to do modular reasoning on concurrent and multi-agent systems. �ese problems1102

were �rst identi�ed in [34] and further studied in [28]. However, no algorithmic so-1103

lutions to these two problems were presented in either [34] or [28]. Speci�cally, in1104

this paper, bisimilarity was exploited in two ways. Firstly, our construction of punish-1105

ment strategies (used in the characterisation of Nash equilibrium given by �eorem 3)1106

assumes that players have access to the history of choices that other players in the1107

game have made. As shown in [28, 29], with a model of strategies where this is not1108

the case, the preservation of Nash equilibria in the game, as well as of temporal logic1109

properties in equilibrium, may not be guaranteed. Secondly, our implementation in1110

EVE guarantees that any two games whose underlying CGSs are bisimilar, and there-1111

fore should be regarded as observationally equivalent from a concurrency point of1112

view, will produce the same answers to the rational veri�cation and automated syn-1113

thesis problems. It is also worth noting that even though bisimilarity is probably the1114

most widely used behavioural equivalence in concurrency, in the context of multi-1115

agent systems other relations may be preferred, for instance, equivalence relations1116

that take a detailed account of the independent interactions and behaviour of indi-1117

vidual components in a multi-agent system. In such a se�ing, “alternating” relations1118
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with natural ATL∗ characterisations have been studied [68]. Alternating bisimulation1119

is very similar to bisimilarity on labelled transition systems [65, 31], only that when1120

de�ned on CGSs, instead of action pro�les (directions) taken as possible transitions,1121

one allows individual player’s actions, which must be matched in the bisimulation1122

game. Because of this, it immediately follows that any alternating bisimulation as de-1123

�ned in [68] is also a bisimilarity as de�ned here. Despite having a di�erent formal1124

de�nition, a simple observation can be made: Nash equilibria are not preserved by1125

the alternating (bisimulation) equivalence relations in [68] either, which discourages1126

the use of these even stronger equivalence relations for multi-agent systems. In fact,1127

as discussed in [69], the “right” notion of equivalence for games (which can be indi-1128

rectly used as an observationally equivalence between multi-agent systems) and their1129

game theoretic solution concepts is, undoubtedly, an important and interesting topic1130

of debate, which deserves to be investigated further.1131

Some features of our framework. Unlike other approaches to rational synthesis1132

and temporal equilibrium analysis, e.g. [58, 36, 14, 7], we employ parity games [19],1133

which are an intuitively simple veri�cation model with an abundant associated set of1134

algorithmic solutions [70]. In particular, strategies in our framework, as in [7], can1135

depend on players’ actions, leading to a much richer game-theoretic se�ing where1136

Nash equilibrium is invariant under bisimilarity [28, 29], a desirable property for con-1137

current and reactive systems [65, 31, 66, 67]. Our reasoning and veri�cation approach1138

applies to multi-player games that are concurrent and synchronous, with perfect re-1139

call and perfect information, and which can be represented in a high-level, succinct1140

manner using SRML [10]. In addition, the technique developed in this paper, and its1141

associated implementation, considers games with LTL goals, deterministic and pure1142

strategies, and dichotomous preferences. In particular, strategies in these games are1143

assumed to be able to see all past players’ actions. We do not consider mixed or non-1144

deterministic strategies, or goals given by branching-time formulae. We also do not1145

allow for quantitative or probabilistic systems, e.g., such as stochastic games or similar1146

game models. We note, however, that some of these aspects of our reasoning frame-1147

work have been placed to avoid undesirable computational properties. For instance, it1148
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is known that checking for the existence of a Nash equilibrium in multi-player games1149

like the ones we consider is an undecidable problem if either imperfect information1150

or (various kinds of) quantitative/probabilistic information is allowed [17, 71].1151

FutureWork. �is paper gives a solution to the temporal equilibrium problem (both1152

automated synthesis and formal veri�cation) in a noncooperative se�ing. In future1153

work, we plan to investigate the cooperative games se�ing [72]. �e paper also solves1154

the problem in practice for perfect information games. We also plan to investigate if1155

our main algorithms can be extended to decidable classes of imperfect information1156

games, for instance, as those studied to model the behaviour of multi-agent systems1157

in [17, 73, 74, 75]. Whenever possible, such studies will be complemented with prac-1158

tical implementations in EVE. Finally, extensions to epistemic systems and quantita-1159

tive information in the context of multi-agent systems may be another avenue for1160

further applications [76, 77], as well as se�ings with more complex preference rela-1161

tions [13, 14, 78, 79], which would provide a strictly stronger modelling power.1162
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